Abstract:Systems for multimodal Emotion Recognition (ER) commonly rely on features extracted from different modalities (e.g., visual, audio, and textual) to predict the seven basic emotions. However, compound emotions often occur in real-world scenarios and are more difficult to predict. Compound multimodal ER becomes more challenging in videos due to the added uncertainty of diverse modalities. In addition, standard features-based models may not fully capture the complex and subtle cues needed to understand compound emotions. %%%% Since relevant cues can be extracted in the form of text, we advocate for textualizing all modalities, such as visual and audio, to harness the capacity of large language models (LLMs). These models may understand the complex interaction between modalities and the subtleties of complex emotions. Although training an LLM requires large-scale datasets, a recent surge of pre-trained LLMs, such as BERT and LLaMA, can be easily fine-tuned for downstream tasks like compound ER. This paper compares two multimodal modeling approaches for compound ER in videos -- standard feature-based vs. text-based. Experiments were conducted on the challenging C-EXPR-DB dataset for compound ER, and contrasted with results on the MELD dataset for basic ER. Our code is available
Abstract:Confocal fluorescence microscopy is one of the most accessible and widely used imaging techniques for the study of biological processes. Scanning confocal microscopy allows the capture of high-quality images from 3D samples, yet suffers from well-known limitations such as photobleaching and phototoxicity of specimens caused by intense light exposure, which limits its use in some applications, especially for living cells. Cellular damage can be alleviated by changing imaging parameters to reduce light exposure, often at the expense of image quality. Machine/deep learning methods for single-image super-resolution (SISR) can be applied to restore image quality by upscaling lower-resolution (LR) images to produce high-resolution images (HR). These SISR methods have been successfully applied to photo-realistic images due partly to the abundance of publicly available data. In contrast, the lack of publicly available data partly limits their application and success in scanning confocal microscopy. In this paper, we introduce a large scanning confocal microscopy dataset named SR-CACO-2 that is comprised of low- and high-resolution image pairs marked for three different fluorescent markers. It allows the evaluation of performance of SISR methods on three different upscaling levels (X2, X4, X8). SR-CACO-2 contains the human epithelial cell line Caco-2 (ATCC HTB-37), and it is composed of 22 tiles that have been translated in the form of 9,937 image patches for experiments with SISR methods. Given the new SR-CACO-2 dataset, we also provide benchmarking results for 15 state-of-the-art methods that are representative of the main SISR families. Results show that these methods have limited success in producing high-resolution textures, indicating that SR-CACO-2 represents a challenging problem. Our dataset, code and pretrained weights are available: https://github.com/sbelharbi/sr-caco-2.
Abstract:Given the emergence of deep learning, digital pathology has gained popularity for cancer diagnosis based on histology images. Deep weakly supervised object localization (WSOL) models can be trained to classify histology images according to cancer grade and identify regions of interest (ROIs) for interpretation, using inexpensive global image-class annotations. A WSOL model initially trained on some labeled source image data can be adapted using unlabeled target data in cases of significant domain shifts caused by variations in staining, scanners, and cancer type. In this paper, we focus on source-free (unsupervised) domain adaptation (SFDA), a challenging problem where a pre-trained source model is adapted to a new target domain without using any source domain data for privacy and efficiency reasons. SFDA of WSOL models raises several challenges in histology, most notably because they are not intended to adapt for both classification and localization tasks. In this paper, 4 state-of-the-art SFDA methods, each one representative of a main SFDA family, are compared for WSOL in terms of classification and localization accuracy. They are the SFDA-Distribution Estimation, Source HypOthesis Transfer, Cross-Domain Contrastive Learning, and Adaptively Domain Statistics Alignment. Experimental results on the challenging Glas (smaller, breast cancer) and Camelyon16 (larger, colon cancer) histology datasets indicate that these SFDA methods typically perform poorly for localization after adaptation when optimized for classification.
Abstract:Weakly Supervised Object Localization (WSOL) allows for training deep learning models for classification and localization, using only global class-level labels. The lack of bounding box (bbox) supervision during training represents a considerable challenge for hyper-parameter search and model selection. Earlier WSOL works implicitly observed localization performance over a test set which leads to biased performance evaluation. More recently, a better WSOL protocol has been proposed, where a validation set with bbox annotations is held out for model selection. Although it does not rely on the test set, this protocol is unrealistic since bboxes are not available in real-world applications, and when available, it is better to use them directly to fit model weights. Our initial empirical analysis shows that the localization performance of a model declines significantly when using only image-class labels for model selection (compared to using bounding-box annotations). This suggests that adding bounding-box labels is preferable for selecting the best model for localization. In this paper, we introduce a new WSOL validation protocol that provides a localization signal without the need for manual bbox annotations. In particular, we leverage noisy pseudo boxes from an off-the-shelf ROI proposal generator such as Selective-Search, CLIP, and RPN pretrained models for model selection. Our experimental results with several WSOL methods on ILSVRC and CUB-200-2011 datasets show that our noisy boxes allow selecting models with performance close to those selected using ground truth boxes, and better than models selected using only image-class labels.
Abstract:Audiovisual emotion recognition (ER) in videos has immense potential over unimodal performance. It effectively leverages the inter- and intra-modal dependencies between visual and auditory modalities. This work proposes a novel audio-visual emotion recognition system utilizing a joint multimodal transformer architecture with key-based cross-attention. This framework aims to exploit the complementary nature of audio and visual cues (facial expressions and vocal patterns) in videos, leading to superior performance compared to solely relying on a single modality. The proposed model leverages separate backbones for capturing intra-modal temporal dependencies within each modality (audio and visual). Subsequently, a joint multimodal transformer architecture integrates the individual modality embeddings, enabling the model to effectively capture inter-modal (between audio and visual) and intra-modal (within each modality) relationships. Extensive evaluations on the challenging Affwild2 dataset demonstrate that the proposed model significantly outperforms baseline and state-of-the-art methods in ER tasks.
Abstract:While state-of-the-art facial expression recognition (FER) classifiers achieve a high level of accuracy, they lack interpretability, an important aspect for end-users. To recognize basic facial expressions, experts resort to a codebook associating a set of spatial action units to a facial expression. In this paper, we follow the same expert footsteps, and propose a learning strategy that allows us to explicitly incorporate spatial action units (aus) cues into the classifier's training to build a deep interpretable model. In particular, using this aus codebook, input image expression label, and facial landmarks, a single action units heatmap is built to indicate the most discriminative regions of interest in the image w.r.t the facial expression. We leverage this valuable spatial cue to train a deep interpretable classifier for FER. This is achieved by constraining the spatial layer features of a classifier to be correlated with \aus map. Using a composite loss, the classifier is trained to correctly classify an image while yielding interpretable visual layer-wise attention correlated with aus maps, simulating the experts' decision process. This is achieved using only the image class expression as supervision and without any extra manual annotations. Moreover, our method is generic. It can be applied to any CNN- or transformer-based deep classifier without the need for architectural change or adding significant training time. Our extensive evaluation on two public benchmarks RAFDB, and AFFECTNET datasets shows that our proposed strategy can improve layer-wise interpretability without degrading classification performance. In addition, we explore a common type of interpretable classifiers that rely on Class-Activation Mapping methods (CAMs), and we show that our training technique improves the CAM interpretability.
Abstract:Multimodal affect recognition models have reached remarkable performance in the lab environment due to their ability to model complementary and redundant semantic information. However, these models struggle in the wild, mainly because of the unavailability or quality of modalities used for training. In practice, only a subset of the training-time modalities may be available at test time. Learning with privileged information (PI) enables deep learning models (DL) to exploit data from additional modalities only available during training. State-of-the-art knowledge distillation (KD) methods have been proposed to distill multiple teacher models (each trained on a modality) to a common student model. These privileged KD methods typically utilize point-to-point matching and have no explicit mechanism to capture the structural information in the teacher representation space formed by introducing the privileged modality. We argue that encoding this same structure in the student space may lead to enhanced student performance. This paper introduces a new structural KD mechanism based on optimal transport (OT), where entropy-regularized OT distills the structural dark knowledge. Privileged KD with OT (PKDOT) method captures the local structures in the multimodal teacher representation by calculating a cosine similarity matrix and selects the top-k anchors to allow for sparse OT solutions, resulting in a more stable distillation process. Experiments were performed on two different problems: pain estimation on the Biovid dataset (ordinal classification) and arousal-valance prediction on the Affwild2 dataset (regression). Results show that the proposed method can outperform state-of-the-art privileged KD methods on these problems. The diversity of different modalities and fusion architectures indicates that the proposed PKDOT method is modality and model-agnostic.
Abstract:Adapting a deep learning (DL) model to a specific target individual is a challenging task in facial expression recognition (FER) that may be achieved using unsupervised domain adaptation (UDA) methods. Although several UDA methods have been proposed to adapt deep FER models across source and target data sets, multiple subject-specific source domains are needed to accurately represent the intra- and inter-person variability in subject-based adaption. In this paper, we consider the setting where domains correspond to individuals, not entire datasets. Unlike UDA, multi-source domain adaptation (MSDA) methods can leverage multiple source datasets to improve the accuracy and robustness of the target model. However, previous methods for MSDA adapt image classification models across datasets and do not scale well to a larger number of source domains. In this paper, a new MSDA method is introduced for subject-based domain adaptation in FER. It efficiently leverages information from multiple source subjects (labeled source domain data) to adapt a deep FER model to a single target individual (unlabeled target domain data). During adaptation, our Subject-based MSDA first computes a between-source discrepancy loss to mitigate the domain shift among data from several source subjects. Then, a new strategy is employed to generate augmented confident pseudo-labels for the target subject, allowing a reduction in the domain shift between source and target subjects. Experiments\footnote{\textcolor{red}{\textbf{Supplementary material} contains our code, which will be made public, and additional experimental results.}} on the challenging BioVid heat and pain dataset (PartA) with 87 subjects shows that our Subject-based MSDA can outperform state-of-the-art methods yet scale well to multiple subject-based source domains.
Abstract:Self-supervised vision transformers (SSTs) have shown great potential to yield rich localization maps that highlight different objects in an image. However, these maps remain class-agnostic since the model is unsupervised. They often tend to decompose the image into multiple maps containing different objects while being unable to distinguish the object of interest from background noise objects. In this paper, Discriminative Pseudo-label Sampling (DiPS) is introduced to leverage these class-agnostic maps for weakly-supervised object localization (WSOL), where only image-class labels are available. Given multiple attention maps, DiPS relies on a pre-trained classifier to identify the most discriminative regions of each attention map. This ensures that the selected ROIs cover the correct image object while discarding the background ones, and, as such, provides a rich pool of diverse and discriminative proposals to cover different parts of the object. Subsequently, these proposals are used as pseudo-labels to train our new transformer-based WSOL model designed to perform classification and localization tasks. Unlike standard WSOL methods, DiPS optimizes performance in both tasks by using a transformer encoder and a dedicated output head for each task, each trained using dedicated loss functions. To avoid overfitting a single proposal and promote better object coverage, a single proposal is randomly selected among the top ones for a training image at each training step. Experimental results on the challenging CUB, ILSVRC, OpenImages, and TelDrone datasets indicate that our architecture, in combination with our transformer-based proposals, can yield better localization performance than state-of-the-art methods.
Abstract:Weakly-supervised video object localization (WSVOL) methods often rely on visual and motion cues only, making them susceptible to inaccurate localization. Recently, discriminative models via a temporal class activation mapping (CAM) method have been explored. Although results are promising, objects are assumed to have minimal movement leading to degradation in performance for relatively long-term dependencies. In this paper, a novel CoLo-CAM method for object localization is proposed to leverage spatiotemporal information in activation maps without any assumptions about object movement. Over a given sequence of frames, explicit joint learning of localization is produced across these maps based on color cues, by assuming an object has similar color across frames. The CAMs' activations are constrained to activate similarly over pixels with similar colors, achieving co-localization. This joint learning creates direct communication among pixels across all image locations, and over all frames, allowing for transfer, aggregation, and correction of learned localization. This is achieved by minimizing a color term of a CRF loss over joint images/maps. In addition to our multi-frame constraint, we impose per-frame local constraints including pseudo-labels, and CRF loss in combination with a global size constraint to improve per-frame localization. Empirical experiments on two challenging datasets for unconstrained videos, YouTube-Objects, show the merits of our method, and its robustness to long-term dependencies, leading to new state-of-the-art localization performance. Public code: https://github.com/sbelharbi/colo-cam.