LMF, LISN
Abstract:Systems for multimodal Emotion Recognition (ER) commonly rely on features extracted from different modalities (e.g., visual, audio, and textual) to predict the seven basic emotions. However, compound emotions often occur in real-world scenarios and are more difficult to predict. Compound multimodal ER becomes more challenging in videos due to the added uncertainty of diverse modalities. In addition, standard features-based models may not fully capture the complex and subtle cues needed to understand compound emotions. %%%% Since relevant cues can be extracted in the form of text, we advocate for textualizing all modalities, such as visual and audio, to harness the capacity of large language models (LLMs). These models may understand the complex interaction between modalities and the subtleties of complex emotions. Although training an LLM requires large-scale datasets, a recent surge of pre-trained LLMs, such as BERT and LLaMA, can be easily fine-tuned for downstream tasks like compound ER. This paper compares two multimodal modeling approaches for compound ER in videos -- standard feature-based vs. text-based. Experiments were conducted on the challenging C-EXPR-DB dataset for compound ER, and contrasted with results on the MELD dataset for basic ER. Our code is available
Abstract:We propose leveraging cognitive science research on emotions and communication to improve language models for emotion analysis. First, we present the main emotion theories in psychology and cognitive science. Then, we introduce the main methods of emotion annotation in natural language processing and their connections to psychological theories. We also present the two main types of analyses of emotional communication in cognitive pragmatics. Finally, based on the cognitive science research presented, we propose directions for improving language models for emotion analysis. We suggest that these research efforts pave the way for constructing new annotation schemes and a possible benchmark for emotional understanding, considering different facets of human emotion and communication.
Abstract:The study of dreams has been central to understanding human (un)consciousness, cognition, and culture for centuries. Analyzing dreams quantitatively depends on labor-intensive, manual annotation of dream narratives. We automate this process through a natural language sequence-to-sequence generation framework. This paper presents the first study on character and emotion detection in the English portion of the open DreamBank corpus of dream narratives. Our results show that language models can effectively address this complex task. To get insight into prediction performance, we evaluate the impact of model size, prediction order of characters, and the consideration of proper names and character traits. We compare our approach with a large language model using in-context learning. Our supervised models perform better while having 28 times fewer parameters. Our model and its generated annotations are made publicly available.
Abstract:Emotion regulation is a crucial element in dealing with emotional events and has positive effects on mental health. This paper aims to provide a more comprehensive understanding of emotional events by introducing a new French corpus of emotional narratives collected using a questionnaire for emotion regulation. We follow the theoretical framework of the Component Process Model which considers emotions as dynamic processes composed of four interrelated components (behavior, feeling, thinking and territory). Each narrative is related to a discrete emotion and is structured based on all emotion components by the writers. We study the interaction of components and their impact on emotion classification with machine learning methods and pre-trained language models. Our results show that each component improves prediction performance, and that the best results are achieved by jointly considering all components. Our results also show the effectiveness of pre-trained language models in predicting discrete emotion from certain components, which reveal differences in how emotion components are expressed.
Abstract:Emotion analysis in texts suffers from two major limitations: annotated gold-standard corpora are mostly small and homogeneous, and emotion identification is often simplified as a sentence-level classification problem. To address these issues, we introduce a new annotation scheme for exploring emotions and their causes, along with a new French dataset composed of autobiographical accounts of an emotional scene. The texts were collected by applying the Cognitive Analysis of Emotions developed by A. Finkel to help people improve on their emotion management. The method requires the manual analysis of an emotional event by a coach trained in Cognitive Analysis. We present a rule-based approach to automatically annotate emotions and their semantic roles (e.g. emotion causes) to facilitate the identification of relevant aspects by the coach. We investigate future directions for emotion analysis using graph structures.