UNIBE
Abstract:We propose leveraging cognitive science research on emotions and communication to improve language models for emotion analysis. First, we present the main emotion theories in psychology and cognitive science. Then, we introduce the main methods of emotion annotation in natural language processing and their connections to psychological theories. We also present the two main types of analyses of emotional communication in cognitive pragmatics. Finally, based on the cognitive science research presented, we propose directions for improving language models for emotion analysis. We suggest that these research efforts pave the way for constructing new annotation schemes and a possible benchmark for emotional understanding, considering different facets of human emotion and communication.
Abstract:Can AI and humans genuinely communicate? In this article, after giving some background and motivating my proposal (sections 1 to 3), I explore a way to answer this question that I call the "mental-behavioral methodology" (sections 4 and 5). This methodology follows the following three steps: First, spell out what mental capacities are sufficient for human communication (as opposed to communication more generally). Second, spell out the experimental paradigms required to test whether a behavior exhibits these capacities. Third, apply or adapt these paradigms to test whether an AI displays the relevant behaviors. If the first two steps are successfully completed, and if the AI passes the tests with human-like results, this constitutes evidence that this AI and humans can genuinely communicate. This mental-behavioral methodology has the advantage that we don't need to understand the workings of black-box algorithms, such as standard deep neural networks. This is comparable to the fact that we don't need to understand how human brains work to know that humans can genuinely communicate. This methodology also has its disadvantages and I will discuss some of them (section 6).