Abstract:Developmental dysgraphia is a neurological disorder that hinders children's writing skills. In recent years, researchers have increasingly explored machine learning methods to support the diagnosis of dysgraphia based on offline and online handwriting. In most previous studies, the two types of handwriting have been analysed separately, which does not necessarily lead to promising results. In this way, the relationship between online and offline data cannot be explored. To address this limitation, we propose a novel multimodal machine learning approach utilizing both online and offline handwriting data. We created a new dataset by transforming an existing online handwritten dataset, generating corresponding offline handwriting images. We considered only different types of word data (simple word, pseudoword & difficult word) in our multimodal analysis. We trained SVM and XGBoost classifiers separately on online and offline features as well as implemented multimodal feature fusion and soft-voted ensemble. Furthermore, we proposed a novel ensemble with conditional feature fusion method which intelligently combines predictions from online and offline classifiers, selectively incorporating feature fusion when confidence scores fall below a threshold. Our novel approach achieves an accuracy of 88.8%, outperforming SVMs for single modalities by 12-14%, existing methods by 8-9%, and traditional multimodal approaches (soft-vote ensemble and feature fusion) by 3% and 5%, respectively. Our methodology contributes to the development of accurate and efficient dysgraphia diagnosis tools, requiring only a single instance of multimodal word/pseudoword data to determine the handwriting impairment. This work highlights the potential of multimodal learning in enhancing dysgraphia diagnosis, paving the way for accessible and practical diagnostic tools.
Abstract:It is imperative that breast cancer is detected precisely and timely to improve patient outcomes. Diagnostic methodologies have traditionally relied on unimodal approaches; however, medical data analytics is integrating diverse data sources beyond conventional imaging. Using multi-modal techniques, integrating both image and non-image data, marks a transformative advancement in breast cancer diagnosis. The purpose of this review is to explore the burgeoning field of multimodal techniques, particularly the fusion of histopathology images with non-image data. Further, Explainable AI (XAI) will be used to elucidate the decision-making processes of complex algorithms, emphasizing the necessity of explainability in diagnostic processes. This review utilizes multi-modal data and emphasizes explainability to enhance diagnostic accuracy, clinician confidence, and patient engagement, ultimately fostering more personalized treatment strategies for breast cancer, while also identifying research gaps in multi-modality and explainability, guiding future studies, and contributing to the strategic direction of the field.
Abstract:Dysarthria is a neurological speech disorder that can significantly impact affected individuals' communication abilities and overall quality of life. The accurate and objective classification of dysarthria and the determination of its severity are crucial for effective therapeutic intervention. While traditional assessments by speech-language pathologists (SLPs) are common, they are often subjective, time-consuming, and can vary between practitioners. Emerging machine learning-based models have shown the potential to provide a more objective dysarthria assessment, enhancing diagnostic accuracy and reliability. This systematic review aims to comprehensively analyze current methodologies for classifying dysarthria based on severity levels. Specifically, this review will focus on determining the most effective set and type of features that can be used for automatic patient classification and evaluating the best AI techniques for this purpose. We will systematically review the literature on the automatic classification of dysarthria severity levels. Sources of information will include electronic databases and grey literature. Selection criteria will be established based on relevance to the research questions. Data extraction will include methodologies used, the type of features extracted for classification, and AI techniques employed. The findings of this systematic review will contribute to the current understanding of dysarthria classification, inform future research, and support the development of improved diagnostic tools. The implications of these findings could be significant in advancing patient care and improving therapeutic outcomes for individuals affected by dysarthria.
Abstract:Three-dimensional (3D) point cloud analysis has become one of the attractive subjects in realistic imaging and machine visions due to its simplicity, flexibility and powerful capacity of visualization. Actually, the representation of scenes and buildings using 3D shapes and formats leveraged many applications among which automatic driving, scenes and objects reconstruction, etc. Nevertheless, working with this emerging type of data has been a challenging task for objects representation, scenes recognition, segmentation, and reconstruction. In this regard, a significant effort has recently been devoted to developing novel strategies, using different techniques such as deep learning models. To that end, we present in this paper a comprehensive review of existing tasks on 3D point cloud: a well-defined taxonomy of existing techniques is performed based on the nature of the adopted algorithms, application scenarios, and main objectives. Various tasks performed on 3D point could data are investigated, including objects and scenes detection, recognition, segmentation and reconstruction. In addition, we introduce a list of used datasets, we discuss respective evaluation metrics and we compare the performance of existing solutions to better inform the state-of-the-art and identify their limitations and strengths. Lastly, we elaborate on current challenges facing the subject of technology and future trends attracting considerable interest, which could be a starting point for upcoming research studies
Abstract:Automatic speech recognition (ASR) has recently become an important challenge when using deep learning (DL). It requires large-scale training datasets and high computational and storage resources. Moreover, DL techniques and machine learning (ML) approaches in general, hypothesize that training and testing data come from the same domain, with the same input feature space and data distribution characteristics. This assumption, however, is not applicable in some real-world artificial intelligence (AI) applications. Moreover, there are situations where gathering real data is challenging, expensive, or rarely occurring, which can not meet the data requirements of DL models. deep transfer learning (DTL) has been introduced to overcome these issues, which helps develop high-performing models using real datasets that are small or slightly different but related to the training data. This paper presents a comprehensive survey of DTL-based ASR frameworks to shed light on the latest developments and helps academics and professionals understand current challenges. Specifically, after presenting the DTL background, a well-designed taxonomy is adopted to inform the state-of-the-art. A critical analysis is then conducted to identify the limitations and advantages of each framework. Moving on, a comparative study is introduced to highlight the current challenges before deriving opportunities for future research.
Abstract:Learning disabilities, which primarily interfere with the basic learning skills such as reading, writing and math, are known to affect around 10% of children in the world. The poor motor skills and motor coordination as part of the neurodevelopmental disorder can become a causative factor for the difficulty in learning to write (dysgraphia), hindering the academic track of an individual. The signs and symptoms of dysgraphia include but are not limited to irregular handwriting, improper handling of writing medium, slow or labored writing, unusual hand position, etc. The widely accepted assessment criterion for all the types of learning disabilities is the examination performed by medical experts. The few available artificial intelligence-powered screening systems for dysgraphia relies on the distinctive features of handwriting from the corresponding images.This work presents a review of the existing automated dysgraphia diagnosis systems for children in the literature. The main focus of the work is to review artificial intelligence-based systems for dysgraphia diagnosis in children. This work discusses the data collection method, important handwriting features, machine learning algorithms employed in the literature for the diagnosis of dysgraphia. Apart from that, this article discusses some of the non-artificial intelligence-based automated systems also. Furthermore, this article discusses the drawbacks of existing systems and proposes a novel framework for dysgraphia diagnosis.
Abstract:To understand the real world using various types of data, Artificial Intelligence (AI) is the most used technique nowadays. While finding the pattern within the analyzed data represents the main task. This is performed by extracting representative features step, which is proceeded using the statistical algorithms or using some specific filters. However, the selection of useful features from large-scale data represented a crucial challenge. Now, with the development of convolution neural networks (CNNs), the feature extraction operation has become more automatic and easier. CNNs allow to work on large-scale size of data, as well as cover different scenarios for a specific task. For computer vision tasks, convolutional networks are used to extract features also for the other parts of a deep learning model. The selection of a suitable network for feature extraction or the other parts of a DL model is not random work. So, the implementation of such a model can be related to the target task as well as the computational complexity of it. Many networks have been proposed and become the famous networks used for any DL models in any AI task. These networks are exploited for feature extraction or at the beginning of any DL model which is named backbones. A backbone is a known network trained in many other tasks before and demonstrates its effectiveness. In this paper, an overview of the existing backbones, e.g. VGGs, ResNets, DenseNet, etc, is given with a detailed description. Also, a couple of computer vision tasks are discussed by providing a review of each task regarding the backbones used. In addition, a comparison in terms of performance is also provided, based on the backbone used for each task.
Abstract:Image segmentation for video analysis plays an essential role in different research fields such as smart city, healthcare, computer vision and geoscience, and remote sensing applications. In this regard, a significant effort has been devoted recently to developing novel segmentation strategies; one of the latest outstanding achievements is panoptic segmentation. The latter has resulted from the fusion of semantic and instance segmentation. Explicitly, panoptic segmentation is currently under study to help gain a more nuanced knowledge of the image scenes for video surveillance, crowd counting, self-autonomous driving, medical image analysis, and a deeper understanding of the scenes in general. To that end, we present in this paper the first comprehensive review of existing panoptic segmentation methods to the best of the authors' knowledge. Accordingly, a well-defined taxonomy of existing panoptic techniques is performed based on the nature of the adopted algorithms, application scenarios, and primary objectives. Moreover, the use of panoptic segmentation for annotating new datasets by pseudo-labeling is discussed. Moving on, ablation studies are carried out to understand the panoptic methods from different perspectives. Moreover, evaluation metrics suitable for panoptic segmentation are discussed, and a comparison of the performance of existing solutions is provided to inform the state-of-the-art and identify their limitations and strengths. Lastly, the current challenges the subject technology faces and the future trends attracting considerable interest in the near future are elaborated, which can be a starting point for the upcoming research studies. The papers provided with code are available at: https://github.com/elharroussomar/Awesome-Panoptic-Segmentation
Abstract:Crowd counting on the drone platform is an interesting topic in computer vision, which brings new challenges such as small object inference, background clutter and wide viewpoint. However, there are few algorithms focusing on crowd counting on the drone-captured data due to the lack of comprehensive datasets. To this end, we collect a large-scale dataset and organize the Vision Meets Drone Crowd Counting Challenge (VisDrone-CC2020) in conjunction with the 16th European Conference on Computer Vision (ECCV 2020) to promote the developments in the related fields. The collected dataset is formed by $3,360$ images, including $2,460$ images for training, and $900$ images for testing. Specifically, we manually annotate persons with points in each video frame. There are $14$ algorithms from $15$ institutes submitted to the VisDrone-CC2020 Challenge. We provide a detailed analysis of the evaluation results and conclude the challenge. More information can be found at the website: \url{http://www.aiskyeye.com/}.
Abstract:The novelty of the COVID-19 disease and the speed of spread has created a colossal chaos, impulse among researchers worldwide to exploit all the resources and capabilities to understand and analyze characteristics of the coronavirus in term of the ways it spreads and virus incubation time. For that, the existing medical features like CT and X-ray images are used. For example, CT-scan images can be used for the detection of lung infection. But the challenges of these features such as the quality of the image and infection characteristics limitate the effectiveness of these features. Using artificial intelligence (AI) tools and computer vision algorithms, the accuracy of detection can be more accurate and can help to overcome these issues. This paper proposes a multi-task deep-learning-based method for lung infection segmentation using CT-scan images. Our proposed method starts by segmenting the lung regions that can be infected. Then, segmenting the infections in these regions. Also, to perform a multi-class segmentation the proposed model is trained using the two-stream inputs. The multi-task learning used in this paper allows us to overcome shortage of labeled data. Also, the multi-input stream allows the model to do the learning on many features that can improve the results. To evaluate the proposed method, many features have been used. Also, from the experiments, the proposed method can segment lung infections with a high degree performance even with shortage of data and labeled images. In addition, comparing with the state-of-the-art method our method achieves good performance results.