Abstract:The 3D point cloud (3DPC) has significantly evolved and benefited from the advance of deep learning (DL). However, the latter faces various issues, including the lack of data or annotated data, the existence of a significant gap between training data and test data, and the requirement for high computational resources. To that end, deep transfer learning (DTL), which decreases dependency and costs by utilizing knowledge gained from a source data/task in training a target data/task, has been widely investigated. Numerous DTL frameworks have been suggested for aligning point clouds obtained from several scans of the same scene. Additionally, DA, which is a subset of DTL, has been modified to enhance the point cloud data's quality by dealing with noise and missing points. Ultimately, fine-tuning and DA approaches have demonstrated their effectiveness in addressing the distinct difficulties inherent in point cloud data. This paper presents the first review shedding light on this aspect. it provides a comprehensive overview of the latest techniques for understanding 3DPC using DTL and domain adaptation (DA). Accordingly, DTL's background is first presented along with the datasets and evaluation metrics. A well-defined taxonomy is introduced, and detailed comparisons are presented, considering different aspects such as different knowledge transfer strategies, and performance. The paper covers various applications, such as 3DPC object detection, semantic labeling, segmentation, classification, registration, downsampling/upsampling, and denoising. Furthermore, the article discusses the advantages and limitations of the presented frameworks, identifies open challenges, and suggests potential research directions.
Abstract:This review article discusses the roles of federated learning (FL) and transfer learning (TL) in cancer detection based on image analysis. These two strategies powered by machine learning have drawn a lot of attention due to their potential to increase the precision and effectiveness of cancer diagnosis in light of the growing importance of machine learning techniques in cancer detection. FL enables the training of machine learning models on data distributed across multiple sites without the need for centralized data sharing, while TL allows for the transfer of knowledge from one task to another. A comprehensive assessment of the two methods, including their strengths, and weaknesses is presented. Moving on, their applications in cancer detection are discussed, including potential directions for the future. Finally, this article offers a thorough description of the functions of TL and FL in image-based cancer detection. The authors also make insightful suggestions for additional study in this rapidly developing area.
Abstract:Machine learning has revolutionized the field of agricultural science, particularly in the early detection and management of plant diseases, which are crucial for maintaining crop health and productivity. Leveraging advanced algorithms and imaging technologies, researchers are now able to identify and classify plant diseases with unprecedented accuracy and speed. Effective management of tomato diseases is crucial for enhancing agricultural productivity. The development and application of tomato disease classification methods are central to this objective. This paper introduces a cutting-edge technique for the detection and classification of tomato leaf diseases, utilizing insights from the latest pre-trained Convolutional Neural Network (CNN) models. We propose a sophisticated approach within the domain of tensor subspace learning, known as Higher-Order Whitened Singular Value Decomposition (HOWSVD), designed to boost the discriminatory power of the system. Our approach to Tensor Subspace Learning is methodically executed in two phases, beginning with HOWSVD and culminating in Multilinear Discriminant Analysis (MDA). The efficacy of this innovative method was rigorously tested through comprehensive experiments on two distinct datasets, namely PlantVillage and the Taiwan dataset. The findings reveal that HOWSVD-MDA outperforms existing methods, underscoring its capability to markedly enhance the precision and dependability of diagnosing tomato leaf diseases. For instance, up to 98.36\% and 89.39\% accuracy scores have been achieved under PlantVillage and the Taiwan datasets, respectively.
Abstract:In recent times, the fields of high-energy physics (HEP) experimentation and phenomenological studies have seen the integration of machine learning (ML) and its specialized branch, deep learning (DL). This survey offers a comprehensive assessment of these applications within the realm of various DL approaches. The initial segment of the paper introduces the fundamentals encompassing diverse particle physics types and establishes criteria for evaluating particle physics in tandem with learning models. Following this, a comprehensive taxonomy is presented for representing HEP images, encompassing accessible datasets, intricate details of preprocessing techniques, and methods of feature extraction and selection. Subsequently, the focus shifts to an exploration of available artificial intelligence (AI) models tailored to HEP images, along with a concentrated examination of HEP image classification pertaining to Jet particles. Within this review, a profound investigation is undertaken into distinct ML and DL proposed state-of-the art (SOTA) techniques, underscoring their implications for HEP inquiries. The discussion delves into specific applications in substantial detail, including Jet tagging, Jet tracking, particle classification, and more. The survey culminates with an analysis concerning the present status of HEP grounded in DL methodologies, encompassing inherent challenges and prospective avenues for future research endeavors.
Abstract:Anomaly detection in sport facilities has gained significant attention due to its potential to promote energy saving and optimizing operational efficiency. In this research article, we investigate the role of machine learning, particularly deep learning, in anomaly detection for sport facilities. We explore the challenges and perspectives of utilizing deep learning methods for this task, aiming to address the drawbacks and limitations of conventional approaches. Our proposed approach involves feature extraction from the data collected in sport facilities. We present a problem formulation using Deep Feedforward Neural Networks (DFNN) and introduce threshold estimation techniques to identify anomalies effectively. Furthermore, we propose methods to reduce false alarms, ensuring the reliability and accuracy of anomaly detection. To evaluate the effectiveness of our approach, we conduct experiments on aquatic center dataset at Qatar University. The results demonstrate the superiority of our deep learning-based method over conventional techniques, highlighting its potential in real-world applications. Typically, 94.33% accuracy and 92.92% F1-score have been achieved using the proposed scheme.
Abstract:The digital landscape of the Internet of Energy (IoE) is on the brink of a revolutionary transformation with the integration of edge Artificial Intelligence (AI). This comprehensive review elucidates the promise and potential that edge AI holds for reshaping the IoE ecosystem. Commencing with a meticulously curated research methodology, the article delves into the myriad of edge AI techniques specifically tailored for IoE. The myriad benefits, spanning from reduced latency and real-time analytics to the pivotal aspects of information security, scalability, and cost-efficiency, underscore the indispensability of edge AI in modern IoE frameworks. As the narrative progresses, readers are acquainted with pragmatic applications and techniques, highlighting on-device computation, secure private inference methods, and the avant-garde paradigms of AI training on the edge. A critical analysis follows, offering a deep dive into the present challenges including security concerns, computational hurdles, and standardization issues. However, as the horizon of technology ever expands, the review culminates in a forward-looking perspective, envisaging the future symbiosis of 5G networks, federated edge AI, deep reinforcement learning, and more, painting a vibrant panorama of what the future beholds. For anyone vested in the domains of IoE and AI, this review offers both a foundation and a visionary lens, bridging the present realities with future possibilities.
Abstract:This paper discusses the role of Transfer Learning (TL) and transformers in cancer detection based on image analysis. With the enormous evolution of cancer patients, the identification of cancer cells in a patient's body has emerged as a trend in the field of Artificial Intelligence (AI). This process involves analyzing medical images, such as Computed Tomography (CT) scans and Magnetic Resonance Imaging (MRIs), to identify abnormal growths that may help in cancer detection. Many techniques and methods have been realized to improve the quality and performance of cancer classification and detection, such as TL, which allows the transfer of knowledge from one task to another with the same task or domain. TL englobes many methods, particularly those used in image analysis, such as transformers and Convolutional Neural Network (CNN) models trained on the ImageNet dataset. This paper analyzes and criticizes each method of TL based on image analysis and compares the results of each method, showing that transformers have achieved the best results with an accuracy of 97.41% for colon cancer detection and 94.71% for Histopathological Lung cancer. Future directions for cancer detection based on image analysis are also discussed.
Abstract:Computer Vision (CV) is playing a significant role in transforming society by utilizing machine learning (ML) tools for a wide range of tasks. However, the need for large-scale datasets to train ML models creates challenges for centralized ML algorithms. The massive computation loads required for processing and the potential privacy risks associated with storing and processing data on central cloud servers put these algorithms under severe strain. To address these issues, federated learning (FL) has emerged as a promising solution, allowing privacy preservation by training models locally and exchanging them to improve overall performance. Additionally, the computational load is distributed across multiple clients, reducing the burden on central servers. This paper presents, to the best of the authors' knowledge, the first review discussing recent advancements of FL in CV applications, comparing them to conventional centralized training paradigms. It provides an overview of current FL applications in various CV tasks, emphasizing the advantages of FL and the challenges of implementing it in CV. To facilitate this, the paper proposes a taxonomy of FL techniques in CV, outlining their applications and security threats. It also discusses privacy concerns related to implementing blockchain in FL schemes for CV tasks and summarizes existing privacy preservation methods. Moving on, the paper identifies open research challenges and potential future research directions to further exploit the potential of FL and blockchain in CV applications.
Abstract:Steganography and steganalysis are two interrelated aspects of the field of information security. Steganography seeks to conceal communications, whereas steganalysis is aimed to either find them or even, if possible, recover the data they contain. Steganography and steganalysis have attracted a great deal of interest, particularly from law enforcement. Steganography is often used by cybercriminals and even terrorists to avoid being captured while in possession of incriminating evidence, even encrypted, since cryptography is prohibited or restricted in many countries. Therefore, knowledge of cutting-edge techniques to uncover concealed information is crucial in exposing illegal acts. Over the last few years, a number of strong and reliable steganography and steganalysis techniques have been introduced in the literature. This review paper provides a comprehensive overview of deep learning-based steganalysis techniques used to detect hidden information within digital media. The paper covers all types of cover in steganalysis, including image, audio, and video, and discusses the most commonly used deep learning techniques. In addition, the paper explores the use of more advanced deep learning techniques, such as deep transfer learning (DTL) and deep reinforcement learning (DRL), to enhance the performance of steganalysis systems. The paper provides a systematic review of recent research in the field, including data sets and evaluation metrics used in recent studies. It also presents a detailed analysis of DTL-based steganalysis approaches and their performance on different data sets. The review concludes with a discussion on the current state of deep learning-based steganalysis, challenges, and future research directions.
Abstract:This paper study provides a novel contribution to the field of signal processing and DL for ECG signal analysis by introducing a new feature representation method for ECG signals. The proposed method is based on transforming time frequency 1D vectors into 2D images using Gramian Angular Field transform. Moving on, the classification of the transformed ECG signals is performed using Convolutional Neural Networks (CNN). The obtained results show a classification accuracy of 97.47% and 98.65% for anomaly detection. Accordingly, in addition to improving the classification performance compared to the state-of-the-art, the feature representation helps identify and visualize temporal patterns in the ECG signal, such as changes in heart rate, rhythm, and morphology, which may not be apparent in the original signal. This has significant implications in the diagnosis and treatment of cardiovascular diseases and detection of anomalies.