Abstract:Artificial Intelligence (AI) and infectious diseases prediction have recently experienced a common development and advancement. Machine learning (ML) apparition, along with deep learning (DL) emergence, extended many approaches against diseases apparition and their spread. And despite their outstanding results in predicting infectious diseases, conflicts appeared regarding the types of data used and how they can be studied, analyzed, and exploited using various emerging methods. This has led to some ongoing discussions in the field. This research aims not only to provide an overview of what has been accomplished, but also to highlight the difficulties related to the types of data used, and the learning methods applied for each research objective. It categorizes these contributions into three areas: predictions using Public Health Data to prevent the spread of a transmissible disease within a region; predictions using Patients' Medical Data to detect whether a person is infected by a transmissible disease; and predictions using both Public and patient medical data to estimate the extent of disease spread in a population. The paper also critically assesses the potential of AI and outlines its limitations in infectious disease management.
Abstract:Surveillance systems often struggle with managing vast amounts of footage, much of which is irrelevant, leading to inefficient storage and challenges in event retrieval. This paper addresses these issues by proposing an optimized video recording solution focused on activity detection. The proposed approach utilizes a hybrid method that combines motion detection via frame subtraction with object detection using YOLOv9. This strategy specifically targets the recording of scenes involving human or car activity, thereby reducing unnecessary footage and optimizing storage usage. The developed model demonstrates superior performance, achieving precision metrics of 0.855 for car detection and 0.884 for person detection, and reducing the storage requirements by two-thirds compared to traditional surveillance systems that rely solely on motion detection. This significant reduction in storage highlights the effectiveness of the proposed approach in enhancing surveillance system efficiency. Nonetheless, some limitations persist, particularly the occurrence of false positives and false negatives in adverse weather conditions, such as strong winds.
Abstract:This review article discusses the roles of federated learning (FL) and transfer learning (TL) in cancer detection based on image analysis. These two strategies powered by machine learning have drawn a lot of attention due to their potential to increase the precision and effectiveness of cancer diagnosis in light of the growing importance of machine learning techniques in cancer detection. FL enables the training of machine learning models on data distributed across multiple sites without the need for centralized data sharing, while TL allows for the transfer of knowledge from one task to another. A comprehensive assessment of the two methods, including their strengths, and weaknesses is presented. Moving on, their applications in cancer detection are discussed, including potential directions for the future. Finally, this article offers a thorough description of the functions of TL and FL in image-based cancer detection. The authors also make insightful suggestions for additional study in this rapidly developing area.
Abstract:Traditional surveillance systems rely on human attention, limiting their effectiveness. This study employs convolutional neural networks and transfer learning to develop a real-time computer vision system for automatic handgun detection. Comprehensive analysis of online handgun detection methods is conducted, emphasizing reducing false positives and learning time. Transfer learning is demonstrated as an effective approach. Despite technical challenges, the proposed system achieves a precision rate of 84.74%, demonstrating promising performance comparable to related works, enabling faster learning and accurate automatic handgun detection for enhanced security. This research advances security measures by reducing human monitoring dependence, showcasing the potential of transfer learning-based approaches for efficient and reliable handgun detection.
Abstract:This paper discusses the role of Transfer Learning (TL) and transformers in cancer detection based on image analysis. With the enormous evolution of cancer patients, the identification of cancer cells in a patient's body has emerged as a trend in the field of Artificial Intelligence (AI). This process involves analyzing medical images, such as Computed Tomography (CT) scans and Magnetic Resonance Imaging (MRIs), to identify abnormal growths that may help in cancer detection. Many techniques and methods have been realized to improve the quality and performance of cancer classification and detection, such as TL, which allows the transfer of knowledge from one task to another with the same task or domain. TL englobes many methods, particularly those used in image analysis, such as transformers and Convolutional Neural Network (CNN) models trained on the ImageNet dataset. This paper analyzes and criticizes each method of TL based on image analysis and compares the results of each method, showing that transformers have achieved the best results with an accuracy of 97.41% for colon cancer detection and 94.71% for Histopathological Lung cancer. Future directions for cancer detection based on image analysis are also discussed.
Abstract:This paper study provides a novel contribution to the field of signal processing and DL for ECG signal analysis by introducing a new feature representation method for ECG signals. The proposed method is based on transforming time frequency 1D vectors into 2D images using Gramian Angular Field transform. Moving on, the classification of the transformed ECG signals is performed using Convolutional Neural Networks (CNN). The obtained results show a classification accuracy of 97.47% and 98.65% for anomaly detection. Accordingly, in addition to improving the classification performance compared to the state-of-the-art, the feature representation helps identify and visualize temporal patterns in the ECG signal, such as changes in heart rate, rhythm, and morphology, which may not be apparent in the original signal. This has significant implications in the diagnosis and treatment of cardiovascular diseases and detection of anomalies.