Abstract:Machine learning has revolutionized the field of agricultural science, particularly in the early detection and management of plant diseases, which are crucial for maintaining crop health and productivity. Leveraging advanced algorithms and imaging technologies, researchers are now able to identify and classify plant diseases with unprecedented accuracy and speed. Effective management of tomato diseases is crucial for enhancing agricultural productivity. The development and application of tomato disease classification methods are central to this objective. This paper introduces a cutting-edge technique for the detection and classification of tomato leaf diseases, utilizing insights from the latest pre-trained Convolutional Neural Network (CNN) models. We propose a sophisticated approach within the domain of tensor subspace learning, known as Higher-Order Whitened Singular Value Decomposition (HOWSVD), designed to boost the discriminatory power of the system. Our approach to Tensor Subspace Learning is methodically executed in two phases, beginning with HOWSVD and culminating in Multilinear Discriminant Analysis (MDA). The efficacy of this innovative method was rigorously tested through comprehensive experiments on two distinct datasets, namely PlantVillage and the Taiwan dataset. The findings reveal that HOWSVD-MDA outperforms existing methods, underscoring its capability to markedly enhance the precision and dependability of diagnosing tomato leaf diseases. For instance, up to 98.36\% and 89.39\% accuracy scores have been achieved under PlantVillage and the Taiwan datasets, respectively.
Abstract:The growing interest in developing smart diagnostic systems to help medical experts process extensive data for treating incurable diseases has been notable. In particular, the challenge of identifying thyroid cancer (TC) has seen progress with the use of machine learning (ML) and big data analysis, incorporating transformers to evaluate TC prognosis and determine the risk of malignancy in individuals. This review article presents a summary of various studies on AIbased approaches, especially those employing transformers, for diagnosing TC. It introduces a new categorization system for these methods based on artifcial intelligence (AI) algorithms, the goals of the framework, and the computing environments used. Additionally, it scrutinizes and contrasts the available TC datasets by their features. The paper highlights the importance of AI instruments in aiding the diagnosis and treatment of TC through supervised, unsupervised, or mixed approaches, with a special focus on the ongoing importance of transformers in medical diagnostics and disease management. It further discusses the progress made and the continuing obstacles in this area. Lastly, it explores future directions and focuses within this research feld.
Abstract:Person re-identification (PRe-ID) is a computer vision issue, that has been a fertile research area in the last few years. It aims to identify persons across different non-overlapping camera views. In this paper, We propose a novel PRe-ID system that combines tensor feature representation and multilinear subspace learning. Our method exploits the power of pre-trained Convolutional Neural Networks (CNNs) as a strong deep feature extractor, along with two complementary descriptors, Local Maximal Occurrence (LOMO) and Gaussian Of Gaussian (GOG). Then, Tensor-based Cross-View Quadratic Discriminant Analysis (TXQDA) is used to learn a discriminative subspace that enhances the separability between different individuals. Mahalanobis distance is used to match and similarity computation between query and gallery samples. Finally, we evaluate our approach by conducting experiments on three datasets VIPeR, GRID, and PRID450s.
Abstract:In this paper, we present a novel person reidentification (PRe-ID) system that based on tensor feature representation and multilinear subspace learning. Our approach utilizes pretrained CNNs for high-level feature extraction, along with Local Maximal Occurrence (LOMO) and Gaussian Of Gaussian (GOG ) descriptors. Additionally, Cross-View Quadratic Discriminant Analysis (TXQDA) algorithm is used for multilinear subspace learning, which models the data in a tensor framework to enhance discriminative capabilities. Similarity measure based on Mahalanobis distance is used for matching between training and test pedestrian images. Experimental evaluations on VIPeR and PRID450s datasets demonstrate the effectiveness of our method.
Abstract:The challenge of kinship verification from facial images represents a cutting-edge and formidable frontier in the realms of pattern recognition and computer vision. This area of study holds a myriad of potential applications, spanning from image annotation and forensic analysis to social media research. Our research stands out by integrating a preprocessing method named Multiscale Retinex (MSR), which elevates image quality and amplifies contrast, ultimately bolstering the end results. Strategically, our methodology capitalizes on the harmonious blend of deep and shallow texture descriptors, merging them proficiently at the score level through the Logistic Regression (LR) method. To elucidate, we employ the Local Phase Quantization (LPQ) descriptor to extract shallow texture characteristics. For deep feature extraction, we turn to the prowess of the VGG16 model, which is pre-trained on a convolutional neural network (CNN). The robustness and efficacy of our method have been put to the test through meticulous experiments on three rigorous kinship datasets, namely: Cornell Kin Face, UB Kin Face, and TS Kin Face.
Abstract:There has been a growing interest in creating intelligent diagnostic systems to assist medical professionals in analyzing and processing big data for the treatment of incurable diseases. One of the key challenges in this field is detecting thyroid cancer, where advancements have been made using machine learning (ML) and big data analytics to evaluate thyroid cancer prognosis and determine a patient's risk of malignancy. This review paper summarizes a large collection of articles related to artificial intelligence (AI)-based techniques used in the diagnosis of thyroid cancer. Accordingly, a new classification was introduced to classify these techniques based on the AI algorithms used, the purpose of the framework, and the computing platforms used. Additionally, this study compares existing thyroid cancer datasets based on their features. The focus of this study is on how AI-based tools can support the diagnosis and treatment of thyroid cancer, through supervised, unsupervised, or hybrid techniques. It also highlights the progress made and the unresolved challenges in this field. Finally, the future trends and areas of focus in this field are discussed.
Abstract:Person re-identification (PRe-ID) is a crucial task in security, surveillance, and retail analysis, which involves identifying an individual across multiple cameras and views. However, it is a challenging task due to changes in illumination, background, and viewpoint. Efficient feature extraction and metric learning algorithms are essential for a successful PRe-ID system. This paper proposes a novel approach for PRe-ID, which combines a Convolutional Neural Network (CNN) based feature extraction method with Cross-view Quadratic Discriminant Analysis (XQDA) for metric learning. Additionally, a matching algorithm that employs Mahalanobis distance and a score normalization process to address inconsistencies between camera scores is implemented. The proposed approach is tested on four challenging datasets, including VIPeR, GRID, CUHK01, and PRID450S, and promising results are obtained. For example, without normalization, the rank-20 rate accuracies of the GRID, CUHK01, VIPeR and PRID450S datasets were 61.92%, 83.90%, 92.03%, 96.22%; however, after score normalization, they have increased to 64.64%, 89.30%, 92.78%, and 98.76%, respectively. Accordingly, the promising results on four challenging datasets indicate the effectiveness of the proposed approach.