Abstract:Developmental dysgraphia is a neurological disorder that hinders children's writing skills. In recent years, researchers have increasingly explored machine learning methods to support the diagnosis of dysgraphia based on offline and online handwriting. In most previous studies, the two types of handwriting have been analysed separately, which does not necessarily lead to promising results. In this way, the relationship between online and offline data cannot be explored. To address this limitation, we propose a novel multimodal machine learning approach utilizing both online and offline handwriting data. We created a new dataset by transforming an existing online handwritten dataset, generating corresponding offline handwriting images. We considered only different types of word data (simple word, pseudoword & difficult word) in our multimodal analysis. We trained SVM and XGBoost classifiers separately on online and offline features as well as implemented multimodal feature fusion and soft-voted ensemble. Furthermore, we proposed a novel ensemble with conditional feature fusion method which intelligently combines predictions from online and offline classifiers, selectively incorporating feature fusion when confidence scores fall below a threshold. Our novel approach achieves an accuracy of 88.8%, outperforming SVMs for single modalities by 12-14%, existing methods by 8-9%, and traditional multimodal approaches (soft-vote ensemble and feature fusion) by 3% and 5%, respectively. Our methodology contributes to the development of accurate and efficient dysgraphia diagnosis tools, requiring only a single instance of multimodal word/pseudoword data to determine the handwriting impairment. This work highlights the potential of multimodal learning in enhancing dysgraphia diagnosis, paving the way for accessible and practical diagnostic tools.
Abstract:Dysarthria is a neurological speech disorder that can significantly impact affected individuals' communication abilities and overall quality of life. The accurate and objective classification of dysarthria and the determination of its severity are crucial for effective therapeutic intervention. While traditional assessments by speech-language pathologists (SLPs) are common, they are often subjective, time-consuming, and can vary between practitioners. Emerging machine learning-based models have shown the potential to provide a more objective dysarthria assessment, enhancing diagnostic accuracy and reliability. This systematic review aims to comprehensively analyze current methodologies for classifying dysarthria based on severity levels. Specifically, this review will focus on determining the most effective set and type of features that can be used for automatic patient classification and evaluating the best AI techniques for this purpose. We will systematically review the literature on the automatic classification of dysarthria severity levels. Sources of information will include electronic databases and grey literature. Selection criteria will be established based on relevance to the research questions. Data extraction will include methodologies used, the type of features extracted for classification, and AI techniques employed. The findings of this systematic review will contribute to the current understanding of dysarthria classification, inform future research, and support the development of improved diagnostic tools. The implications of these findings could be significant in advancing patient care and improving therapeutic outcomes for individuals affected by dysarthria.