Abstract:Fuzzy rule-based systems interpret data in low-dimensional domains, providing transparency and interpretability. In contrast, deep learning excels in complex tasks like image and speech recognition but is prone to overfitting in sparse, unstructured, or low-dimensional data. This interpretability is crucial in fields like healthcare and finance. Traditional rule-based systems, especially ANFIS with grid partitioning, suffer from exponential rule growth as dimensionality increases. We propose a strategic rule-reduction model that applies Principal Component Analysis (PCA) on normalized firing strengths to obtain linearly uncorrelated components. Binary Particle Swarm Optimization (BPSO) selectively refines these components, significantly reducing the number of rules while preserving precision in decision-making. A custom parameter update mechanism fine-tunes specific ANFIS layers by dynamically adjusting BPSO parameters, avoiding local minima. We validated our approach on standard UCI respiratory, keel classification, regression datasets, and a real-world ischemic stroke dataset, demonstrating adaptability and practicality. Results indicate fewer rules, shorter training, and high accuracy, underscoring the methods effectiveness for low-dimensional interpretability and complex data scenarios. This synergy of fuzzy logic and optimization fosters robust solutions. Our method contributes a powerful framework for interpretable AI in multiple domains. It addresses dimensionality, ensuring a rule base.
Abstract:Dysarthria is a neurological speech disorder that can significantly impact affected individuals' communication abilities and overall quality of life. The accurate and objective classification of dysarthria and the determination of its severity are crucial for effective therapeutic intervention. While traditional assessments by speech-language pathologists (SLPs) are common, they are often subjective, time-consuming, and can vary between practitioners. Emerging machine learning-based models have shown the potential to provide a more objective dysarthria assessment, enhancing diagnostic accuracy and reliability. This systematic review aims to comprehensively analyze current methodologies for classifying dysarthria based on severity levels. Specifically, this review will focus on determining the most effective set and type of features that can be used for automatic patient classification and evaluating the best AI techniques for this purpose. We will systematically review the literature on the automatic classification of dysarthria severity levels. Sources of information will include electronic databases and grey literature. Selection criteria will be established based on relevance to the research questions. Data extraction will include methodologies used, the type of features extracted for classification, and AI techniques employed. The findings of this systematic review will contribute to the current understanding of dysarthria classification, inform future research, and support the development of improved diagnostic tools. The implications of these findings could be significant in advancing patient care and improving therapeutic outcomes for individuals affected by dysarthria.