Abstract:Purpose: The performance of three different large language models (LLMS) (GPT-3.5, GPT-4, and PaLM2) in answering ophthalmology professional questions was evaluated and compared with that of three different professional populations (medical undergraduates, medical masters, and attending physicians). Methods: A 100-item ophthalmology single-choice test was administered to three different LLMs (GPT-3.5, GPT-4, and PaLM2) and three different professional levels (medical undergraduates, medical masters, and attending physicians), respectively. The performance of LLM was comprehensively evaluated and compared with the human group in terms of average score, stability, and confidence. Results: Each LLM outperformed undergraduates in general, with GPT-3.5 and PaLM2 being slightly below the master's level, while GPT-4 showed a level comparable to that of attending physicians. In addition, GPT-4 showed significantly higher answer stability and confidence than GPT-3.5 and PaLM2. Conclusion: Our study shows that LLM represented by GPT-4 performs better in the field of ophthalmology. With further improvements, LLM will bring unexpected benefits in medical education and clinical decision making in the near future.
Abstract:This paper investigates the differences in data organization between contrastive and supervised learning methods, focusing on the concept of locally dense clusters. We introduce a novel metric, Relative Local Density (RLD), to quantitatively measure local density within clusters. Visual examples are provided to highlight the distinctions between locally dense clusters and globally dense ones. By comparing the clusters formed by contrastive and supervised learning, we reveal that contrastive learning generates locally dense clusters without global density, while supervised learning creates clusters with both local and global density. We further explore the use of a Graph Convolutional Network (GCN) classifier as an alternative to linear classifiers for handling locally dense clusters. Finally, we utilize t-SNE visualizations to substantiate the differences between the features generated by contrastive and supervised learning methods. We conclude by proposing future research directions, including the development of efficient classifiers tailored to contrastive learning and the creation of innovative augmentation algorithms.