Abstract:Hierarchical federated learning (HFL) shows great advantages over conventional two-layer federated learning (FL) in reducing network overhead and interaction latency while still retaining the data privacy of distributed FL clients. However, the communication and energy overhead still pose a bottleneck for HFL performance, especially as the number of clients raises dramatically. To tackle this issue, we propose a non-orthogonal multiple access (NOMA) enabled HFL system under semi-synchronous cloud model aggregation in this paper, aiming to minimize the total cost of time and energy at each HFL global round. Specifically, we first propose a novel fuzzy logic based client orchestration policy considering client heterogenerity in multiple aspects, including channel quality, data quantity and model staleness. Subsequently, given the fuzzy based client-edge association, a joint edge server scheduling and resource allocation problem is formulated. Utilizing problem decomposition, we firstly derive the closed-form solution for the edge server scheduling subproblem via the penalty dual decomposition (PDD) method. Next, a deep deterministic policy gradient (DDPG) based algorithm is proposed to tackle the resource allocation subproblem considering time-varying environments. Finally, extensive simulations demonstrate that the proposed scheme outperforms the considered benchmarks regarding HFL performance improvement and total cost reduction.
Abstract:Simultaneous transmission and reflection-reconfigurable intelligent surface (STAR-RIS) can provide expanded coverage compared with the conventional reflection-only RIS. This paper exploits the energy efficient potential of STAR-RIS in a multiple-input and multiple-output (MIMO) enabled non-orthogonal multiple access (NOMA) system. Specifically, we mainly focus on energy-efficient resource allocation with MIMO technology in the STAR-RIS assisted NOMA network. To maximize the system energy efficiency, we propose an algorithm to optimize the transmit beamforming and the phases of the low-cost passive elements on the STAR-RIS alternatively until the convergence. Specifically, we first decompose the formulated energy efficiency problem into beamforming and phase shift optimization problems. To efficiently address the non-convex beamforming optimization problem, we exploit signal alignment and zero-forcing precoding methods in each user pair to decompose MIMO-NOMA channels into single-antenna NOMA channels. Then, the Dinkelbach approach and dual decomposition are utilized to optimize the beamforming vectors. In order to solve non-convex phase shift optimization problem, we propose a successive convex approximation (SCA) based method to efficiently obtain the optimized phase shift of STAR-RIS. Simulation results demonstrate that the proposed algorithm with NOMA technology can yield superior energy efficiency performance over the orthogonal multiple access (OMA) scheme and the random phase shift scheme.
Abstract:Generalized optical multiple-input multiple-output (GOMIMO) techniques have been recently shown to be promising for high-speed optical wireless communication (OWC) systems. In this paper, we propose a novel deep learning-aided GOMIMO (DeepGOMIMO) framework for GOMIMO systems, where channel state information (CSI)-free blind detection can be enabled by employing a specially designed deep neural network (DNN)-based MIMO detector. The CSI-free blind DNN detector mainly consists of two modules: one is the pre-processing module which is designed to address both the path loss and channel crosstalk issues caused by MIMO transmission, and the other is the feed-forward DNN module which is used for joint detection of spatial and constellation information by learning the statistics of both the input signal and the additive noise. Our simulation results clearly verify that, in a typical indoor 4 $\times$ 4 MIMO-OWC system using both generalized optical spatial modulation (GOSM) and generalized optical spatial multiplexing (GOSMP) with unipolar non-zero 4-ary pulse amplitude modulation (4-PAM) modulation, the proposed CSI-free blind DNN detector achieves near the same bit error rate (BER) performance as the optimal joint maximum-likelihood (ML) detector, but with much reduced computational complexity. Moreover, since the CSI-free blind DNN detector does not require instantaneous channel estimation to obtain accurate CSI, it enjoys the unique advantages of improved achievable data rate and reduced communication time delay in comparison to the CSI-based zero-forcing DNN (ZF-DNN) detector.
Abstract:In this paper, we propose an orthogonal frequency division multiplexing (OFDM)-based generalized optical quadrature spatial modulation (GOQSM) technique for multiple-input multiple-output optical wireless communication (MIMO-OWC) systems. Considering the error propagation and noise amplification effects when applying maximum likelihood and maximum ratio combining (ML-MRC)-based detection, we further propose a deep neural network (DNN)-aided detection for OFDM-based GOQSM systems. The proposed DNN-aided detection scheme performs the GOQSM detection in a joint manner, which can efficiently eliminate the adverse effects of both error propagation and noise amplification. The obtained simulation results successfully verify the superiority of the deep learning-aided OFDM-based GOQSM technique for high-speed MIMO-OWC systems.
Abstract:With the aggressive growth of smart environments, a large amount of data are generated by edge devices. As a result, content delivery has been quickly pushed to network edges. Compared with classical content delivery networks, edge caches with smaller size usually suffer from more bursty requests, which makes conventional caching algorithms perform poorly in edge networks. This paper aims to propose an effective caching decision policy called PA-Cache that uses evolving deep learning to adaptively learn time-varying content popularity to decide which content to evict when the cache is full. Unlike prior learning-based approaches that either use a small set of features for decision making or require the entire training dataset to be available for learning a fine-tuned but might outdated prediction model, PA-Cache weights a large set of critical features to train the neural network in an evolving manner so as to meet the edge requests with fluctuations and bursts. We demonstrate the effectiveness of PA-Cache through extensive experiments with real-world data traces from a large commercial video-on-demand service provider. The evaluation shows that PA-Cache improves the hit rate in comparison with state-of-the-art methods at a lower computational cost.