Sherman
Abstract:In this article, we present a novel user-centric service provision for immersive communications (IC) in 6G to deal with the uncertainty of individual user behaviors while satisfying unique requirements on the quality of multi-sensory experience. To this end, we propose a data-oriented approach for network resource management, featuring personalized data management that can support network modeling tailored to different user demands. Our approach leverages the digital twin (DT) technique as a key enabler. Particularly, a DT is established for each user, and the data attributes in the DT are customized based on the characteristics of the user. The DT functions, corresponding to various data operations, are customized in the development, evaluation, and update of network models to meet unique user demands. A trace-driven case study demonstrates the effectiveness of our approach in achieving user-centric IC and the significance of personalized data management in 6G.
Abstract:Multicast short video streaming can enhance bandwidth utilization by enabling simultaneous video transmission to multiple users over shared wireless channels. The existing network management schemes mainly rely on the sequential buffering principle and general quality of experience (QoE) model, which may deteriorate QoE when users' swipe behaviors exhibit distinct spatiotemporal variation. In this paper, we propose a digital twin (DT)-based network management scheme to enhance QoE. Firstly, user status emulated by the DT is utilized to estimate the transmission capabilities and watching probability distributions of sub-multicast groups (SMGs) for an adaptive segment buffering. The SMGs' buffers are aligned to the unique virtual buffers managed by the DT for a fine-grained buffer update. Then, a multicast QoE model consisting of rebuffering time, video quality, and quality variation is developed, by considering the mutual influence of segment buffering among SMGs. Finally, a joint optimization problem of segment version selection and slot division is formulated to maximize QoE. To efficiently solve the problem, a data-model-driven algorithm is proposed by integrating a convex optimization method and a deep reinforcement learning algorithm. Simulation results based on the real-world dataset demonstrate that the proposed DT-based network management scheme outperforms benchmark schemes in terms of QoE improvement.
Abstract:In this paper, we propose a digital twin (DT)-based user-centric approach for processing sensing data in an integrated sensing and communication (ISAC) system with high accuracy and efficient resource utilization. The considered scenario involves an ISAC device with a lightweight deep neural network (DNN) and a mobile edge computing (MEC) server with a large DNN. After collecting sensing data, the ISAC device either processes the data locally or uploads them to the server for higher-accuracy data processing. To cope with data drifts, the server updates the lightweight DNN when necessary, referred to as continual learning. Our objective is to minimize the long-term average computation cost of the MEC server by optimizing two decisions, i.e., sensing data offloading and sensing data selection for the DNN update. A DT of the ISAC device is constructed to predict the impact of potential decisions on the long-term computation cost of the server, based on which the decisions are made with closed-form formulas. Experiments on executing DNN-based human motion recognition tasks are conducted to demonstrate the outstanding performance of the proposed DT-based approach in computation cost minimization.
Abstract:The sixth generation (6G) networks are expected to enable immersive communications and bridge the physical and the virtual worlds. Integrating extended reality, holography, and haptics, immersive communications will revolutionize how people work, entertain, and communicate by enabling lifelike interactions. However, the unprecedented demand for data transmission rate and the stringent requirements on latency and reliability create challenges for 6G networks to support immersive communications. In this survey article, we present the prospect of immersive communications and investigate emerging solutions to the corresponding challenges for 6G. First, we introduce use cases of immersive communications, in the fields of entertainment, education, and healthcare. Second, we present the concepts of immersive communications, including extended reality, haptic communication, and holographic communication, their basic implementation procedures, and their requirements on networks in terms of transmission rate, latency, and reliability. Third, we summarize the potential solutions to addressing the challenges from the aspects of communication, computing, and networking. Finally, we discuss future research directions and conclude this study.