Abstract:In high-risk railway construction, personal protective equipment monitoring is critical but challenging due to small and frequently obstructed targets. We propose YOLO-EA, an innovative model that enhances safety measure detection by integrating ECA into its backbone's convolutional layers, improving discernment of minuscule objects like hardhats. YOLO-EA further refines target recognition under occlusion by replacing GIoU with EIoU loss. YOLO-EA's effectiveness was empirically substantiated using a dataset derived from real-world railway construction site surveillance footage. It outperforms YOLOv5, achieving 98.9% precision and 94.7% recall, up 2.5% and 0.5% respectively, while maintaining real-time performance at 70.774 fps. This highly efficient and precise YOLO-EA holds great promise for practical application in intricate construction scenarios, enforcing stringent safety compliance during complex railway construction projects.
Abstract:Image research has shown substantial attention in deblurring networks in recent years. Yet, their practical usage in real-world deblurring, especially motion blur, remains limited due to the lack of pixel-aligned training triplets (background, blurred image, and blur heat map) and restricted information inherent in blurred images. This paper presents a simple yet efficient framework to synthetic and restore motion blur images using Inertial Measurement Unit (IMU) data. Notably, the framework includes a strategy for training triplet generation, and a Gyroscope-Aided Motion Deblurring (GAMD) network for blurred image restoration. The rationale is that through harnessing IMU data, we can determine the transformation of the camera pose during the image exposure phase, facilitating the deduction of the motion trajectory (aka. blur trajectory) for each point inside the three-dimensional space. Thus, the synthetic triplets using our strategy are inherently close to natural motion blur, strictly pixel-aligned, and mass-producible. Through comprehensive experiments, we demonstrate the advantages of the proposed framework: only two-pixel errors between our synthetic and real-world blur trajectories, a marked improvement (around 33.17%) of the state-of-the-art deblurring method MIMO on Peak Signal-to-Noise Ratio (PSNR).