Abstract:In this work, we re-formulate the model compression problem into the customized compensation problem: Given a compressed model, we aim to introduce residual low-rank paths to compensate for compression errors under customized requirements from users (e.g., tasks, compression ratios), resulting in greater flexibility in adjusting overall capacity without being constrained by specific compression formats. However, naively applying SVD to derive residual paths causes suboptimal utilization of the low-rank representation capacity. Instead, we propose Training-free Eigenspace Low-Rank Approximation (EoRA), a method that directly minimizes compression-induced errors without requiring gradient-based training, achieving fast optimization in minutes using a small amount of calibration data. EoRA projects compression errors into the eigenspace of input activations, leveraging eigenvalues to effectively prioritize the reconstruction of high-importance error components. Moreover, EoRA can be seamlessly integrated with fine-tuning and quantization to further improve effectiveness and efficiency. EoRA consistently outperforms previous methods in compensating errors for compressed LLaMA2/3 models on various tasks, such as language generation, commonsense reasoning, and math reasoning tasks (e.g., 31.31%/12.88% and 9.69% improvements on ARC-Easy/ARC-Challenge and MathQA when compensating LLaMA3-8B that is quantized to 4-bit and pruned to 2:4 sparsity). EoRA offers a scalable, training-free solution to compensate for compression errors, making it a powerful tool to deploy LLMs in various capacity and efficiency requirements.
Abstract:Low-Rank Adaptation (LoRA), as a representative Parameter-Efficient Fine-Tuning (PEFT)method, significantly enhances the training efficiency by updating only a small portion of the weights in Large Language Models (LLMs). Recently, weight-only quantization techniques have also been applied to LoRA methods to reduce the memory footprint of fine-tuning. However, applying weight-activation quantization to the LoRA pipeline is under-explored, and we observe substantial performance degradation primarily due to the presence of activation outliers. In this work, we propose RoLoRA, the first LoRA-based scheme for effective weight-activation quantization. RoLoRA utilizes rotation for outlier elimination and proposes rotation-aware fine-tuning to preserve the outlier-free characteristics in rotated LLMs. Experimental results show RoLoRA consistently improves low-bit LoRA convergence and post-training quantization robustness in weight-activation settings. We evaluate RoLoRA across LLaMA2-7B/13B, LLaMA3-8B models, achieving up to 29.5% absolute accuracy gain of 4-bit weight-activation quantized LLaMA2- 13B on commonsense reasoning tasks compared to LoRA baseline. We further demonstrate its effectiveness on Large Multimodal Models (LLaVA-1.5-7B). Codes are available at https://github.com/HuangOwen/RoLoRA
Abstract:Non-linear functions are prevalent in Transformers and their lightweight variants, incurring substantial and frequently underestimated hardware costs. Previous state-of-the-art works optimize these operations by piece-wise linear approximation and store the parameters in look-up tables (LUT), but most of them require unfriendly high-precision arithmetics such as FP/INT 32 and lack consideration of integer-only INT quantization. This paper proposed a genetic LUT-Approximation algorithm namely GQA-LUT that can automatically determine the parameters with quantization awareness. The results demonstrate that GQA-LUT achieves negligible degradation on the challenging semantic segmentation task for both vanilla and linear Transformer models. Besides, proposed GQA-LUT enables the employment of INT8-based LUT-Approximation that achieves an area savings of 81.3~81.7% and a power reduction of 79.3~80.2% compared to the high-precision FP/INT 32 alternatives. Code is available at https:// github.com/PingchengDong/GQA-LUT.
Abstract:Among the widely used parameter-efficient finetuning (PEFT) methods, LoRA and its variants have gained considerable popularity because of avoiding additional inference costs. However, there still often exists an accuracy gap between these methods and full fine-tuning (FT). In this work, we first introduce a novel weight decomposition analysis to investigate the inherent differences between FT and LoRA. Aiming to resemble the learning capacity of FT from the findings, we propose Weight-Decomposed LowRank Adaptation (DoRA). DoRA decomposes the pre-trained weight into two components, magnitude and direction, for fine-tuning, specifically employing LoRA for directional updates to efficiently minimize the number of trainable parameters. By employing DoRA, we enhance both the learning capacity and training stability of LoRA while avoiding any additional inference overhead. DoRA consistently outperforms LoRA on fine-tuning LLaMA, LLaVA, and VL-BART on various downstream tasks, such as commonsense reasoning, visual instruction tuning, and image/video-text understanding.
Abstract:The expanding model size and computation of deep neural networks (DNNs) have increased the demand for efficient model deployment methods. Quantization-aware training (QAT) is a representative model compression method to leverage redundancy in weights and activations. However, most existing QAT methods require end-to-end training on the entire dataset, which suffers from long training time and high energy costs. Coreset selection, aiming to improve data efficiency utilizing the redundancy of training data, has also been widely used for efficient training. In this work, we propose a new angle through the coreset selection to improve the training efficiency of quantization-aware training. Based on the characteristics of QAT, we propose two metrics: error vector score and disagreement score, to quantify the importance of each sample during training. Guided by these two metrics of importance, we proposed a quantization-aware adaptive coreset selection (ACS) method to select the data for the current training epoch. We evaluate our method on various networks (ResNet-18, MobileNetV2), datasets(CIFAR-100, ImageNet-1K), and under different quantization settings. Compared with previous coreset selection methods, our method significantly improves QAT performance with different dataset fractions. Our method can achieve an accuracy of 68.39% of 4-bit quantized ResNet-18 on the ImageNet-1K dataset with only a 10% subset, which has an absolute gain of 4.24% compared to the baseline.
Abstract:Weight oscillation is an undesirable side effect of quantization-aware training, in which quantized weights frequently jump between two quantized levels, resulting in training instability and a sub-optimal final model. We discover that the learnable scaling factor, a widely-used $\textit{de facto}$ setting in quantization aggravates weight oscillation. In this study, we investigate the connection between the learnable scaling factor and quantized weight oscillation and use ViT as a case driver to illustrate the findings and remedies. In addition, we also found that the interdependence between quantized weights in $\textit{query}$ and $\textit{key}$ of a self-attention layer makes ViT vulnerable to oscillation. We, therefore, propose three techniques accordingly: statistical weight quantization ($\rm StatsQ$) to improve quantization robustness compared to the prevalent learnable-scale-based method; confidence-guided annealing ($\rm CGA$) that freezes the weights with $\textit{high confidence}$ and calms the oscillating weights; and $\textit{query}$-$\textit{key}$ reparameterization ($\rm QKR$) to resolve the query-key intertwined oscillation and mitigate the resulting gradient misestimation. Extensive experiments demonstrate that these proposed techniques successfully abate weight oscillation and consistently achieve substantial accuracy improvement on ImageNet. Specifically, our 2-bit DeiT-T/DeiT-S algorithms outperform the previous state-of-the-art by 9.8% and 7.7%, respectively. The code is included in the supplementary material and will be released.