Abstract:Recent advancements in large vision language models (VLMs) tailored for autonomous driving (AD) have shown strong scene understanding and reasoning capabilities, making them undeniable candidates for end-to-end driving systems. However, limited work exists on studying the trustworthiness of DriveVLMs -- a critical factor that directly impacts public transportation safety. In this paper, we introduce AutoTrust, a comprehensive trustworthiness benchmark for large vision-language models in autonomous driving (DriveVLMs), considering diverse perspectives -- including trustfulness, safety, robustness, privacy, and fairness. We constructed the largest visual question-answering dataset for investigating trustworthiness issues in driving scenarios, comprising over 10k unique scenes and 18k queries. We evaluated six publicly available VLMs, spanning from generalist to specialist, from open-source to commercial models. Our exhaustive evaluations have unveiled previously undiscovered vulnerabilities of DriveVLMs to trustworthiness threats. Specifically, we found that the general VLMs like LLaVA-v1.6 and GPT-4o-mini surprisingly outperform specialized models fine-tuned for driving in terms of overall trustworthiness. DriveVLMs like DriveLM-Agent are particularly vulnerable to disclosing sensitive information. Additionally, both generalist and specialist VLMs remain susceptible to adversarial attacks and struggle to ensure unbiased decision-making across diverse environments and populations. Our findings call for immediate and decisive action to address the trustworthiness of DriveVLMs -- an issue of critical importance to public safety and the welfare of all citizens relying on autonomous transportation systems. Our benchmark is publicly available at \url{https://github.com/taco-group/AutoTrust}, and the leaderboard is released at \url{https://taco-group.github.io/AutoTrust/}.
Abstract:Large language models (LLMs) have demonstrated remarkable capabilities in generating human-like text and exhibiting personality traits similar to those in humans. However, the mechanisms by which LLMs encode and express traits such as agreeableness and impulsiveness remain poorly understood. Drawing on the theory of social determinism, we investigate how long-term background factors, such as family environment and cultural norms, interact with short-term pressures like external instructions, shaping and influencing LLMs' personality traits. By steering the output of LLMs through the utilization of interpretable features within the model, we explore how these background and pressure factors lead to changes in the model's traits without the need for further fine-tuning. Additionally, we suggest the potential impact of these factors on model safety from the perspective of personality.
Abstract:Numerous studies on adversarial attacks targeting self-driving policies fail to incorporate realistic-looking adversarial objects, limiting real-world applicability. Building upon prior research that facilitated the transition of adversarial objects from simulations to practical applications, this paper discusses a modified gradient-based texture optimization method to discover realistic-looking adversarial objects. While retaining the core architecture and techniques of the prior research, the proposed addition involves an entity termed the 'Judge'. This agent assesses the texture of a rendered object, assigning a probability score reflecting its realism. This score is integrated into the loss function to encourage the NeRF object renderer to concurrently learn realistic and adversarial textures. The paper analyzes four strategies for developing a robust 'Judge': 1) Leveraging cutting-edge vision-language models. 2) Fine-tuning open-sourced vision-language models. 3) Pretraining neurosymbolic systems. 4) Utilizing traditional image processing techniques. Our findings indicate that strategies 1) and 4) yield less reliable outcomes, pointing towards strategies 2) or 3) as more promising directions for future research.
Abstract:The rapid advancement in artificial intelligence (AI), particularly through deep neural networks, has catalyzed significant progress in fields such as vision and text processing. Nonetheless, the pursuit of AI systems that exhibit human-like reasoning and interpretability continues to pose a substantial challenge. The Neural-Symbolic paradigm, which integrates the deep learning prowess of neural networks with the reasoning capabilities of symbolic systems, presents a promising pathway toward developing more transparent and comprehensible AI systems. Within this paradigm, the Knowledge Graph (KG) emerges as a crucial element, offering a structured and dynamic method for representing knowledge through interconnected entities and relationships, predominantly utilizing the triple (subject, predicate, object). This paper explores recent advancements in neural-symbolic integration based on KG, elucidating how KG underpins this integration across three key categories: enhancing the reasoning and interpretability of neural networks through the incorporation of symbolic knowledge (Symbol for Neural), refining the completeness and accuracy of symbolic systems via neural network methodologies (Neural for Symbol), and facilitating their combined application in Hybrid Neural-Symbolic Integration. It highlights current trends and proposes directions for future research in the domain of Neural-Symbolic AI.