The rapid advancement in artificial intelligence (AI), particularly through deep neural networks, has catalyzed significant progress in fields such as vision and text processing. Nonetheless, the pursuit of AI systems that exhibit human-like reasoning and interpretability continues to pose a substantial challenge. The Neural-Symbolic paradigm, which integrates the deep learning prowess of neural networks with the reasoning capabilities of symbolic systems, presents a promising pathway toward developing more transparent and comprehensible AI systems. Within this paradigm, the Knowledge Graph (KG) emerges as a crucial element, offering a structured and dynamic method for representing knowledge through interconnected entities and relationships, predominantly utilizing the triple (subject, predicate, object). This paper explores recent advancements in neural-symbolic integration based on KG, elucidating how KG underpins this integration across three key categories: enhancing the reasoning and interpretability of neural networks through the incorporation of symbolic knowledge (Symbol for Neural), refining the completeness and accuracy of symbolic systems via neural network methodologies (Neural for Symbol), and facilitating their combined application in Hybrid Neural-Symbolic Integration. It highlights current trends and proposes directions for future research in the domain of Neural-Symbolic AI.