Abstract:Optimizing the advertiser's cumulative value of winning impressions under budget constraints poses a complex challenge in online advertising, under the paradigm of AI-Generated Bidding (AIGB). Advertisers often have personalized objectives but limited historical interaction data, resulting in few-shot scenarios where traditional reinforcement learning (RL) methods struggle to perform effectively. Large Language Models (LLMs) offer a promising alternative for AIGB by leveraging their in-context learning capabilities to generalize from limited data. However, they lack the numerical precision required for fine-grained optimization. To address this limitation, we introduce GRPO-Adaptive, an efficient LLM post-training strategy that enhances both reasoning and numerical precision by dynamically updating the reference policy during training. Built upon this foundation, we further propose DARA, a novel dual-phase framework that decomposes the decision-making process into two stages: a few-shot reasoner that generates initial plans via in-context prompting, and a fine-grained optimizer that refines these plans using feedback-driven reasoning. This separation allows DARA to combine LLMs' in-context learning strengths with precise adaptability required by AIGB tasks. Extensive experiments on both real-world and synthetic data environments demonstrate that our approach consistently outperforms existing baselines in terms of cumulative advertiser value under budget constraints.
Abstract:Controllable 3D scene generation has extensive applications in virtual reality and interior design, where the generated scenes should exhibit high levels of realism and controllability in terms of geometry. Scene graphs provide a suitable data representation that facilitates these applications. However, current graph-based methods for scene generation are constrained to text-based inputs and exhibit insufficient adaptability to flexible user inputs, hindering the ability to precisely control object geometry. To address this issue, we propose MMGDreamer, a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph, visual enhancement module, and relation predictor. The mixed-modality graph allows object nodes to integrate textual and visual modalities, with optional relationships between nodes. It enhances adaptability to flexible user inputs and enables meticulous control over the geometry of objects in the generated scenes. The visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings. Furthermore, our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts. Extensive experimental results demonstrate that MMGDreamer exhibits superior control of object geometry, achieving state-of-the-art scene generation performance. Project page: https://yangzhifeio.github.io/project/MMGDreamer.