Sid
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:Underwater acoustic target recognition (UATR) is extremely challenging due to the complexity of ship-radiated noise and the variability of ocean environments. Although deep learning (DL) approaches have achieved promising results, most existing models implicitly assume that underwater acoustic data lie in a Euclidean space. This assumption, however, is unsuitable for the inherently complex topology of underwater acoustic signals, which exhibit non-stationary, non-Gaussian, and nonlinear characteristics. To overcome this limitation, this paper proposes the UATR-GTransformer, a non-Euclidean DL model that integrates Transformer architectures with graph neural networks (GNNs). The model comprises three key components: a Mel patchify block, a GTransformer block, and a classification head. The Mel patchify block partitions the Mel-spectrogram into overlapping patches, while the GTransformer block employs a Transformer Encoder to capture mutual information between split patches to generate Mel-graph embeddings. Subsequently, a GNN enhances these embeddings by modeling local neighborhood relationships, and a feed-forward network (FFN) further performs feature transformation. Experiments results based on two widely used benchmark datasets demonstrate that the UATR-GTransformer achieves performance competitive with state-of-the-art methods. In addition, interpretability analysis reveals that the proposed model effectively extracts rich frequency-domain information, highlighting its potential for applications in ocean engineering.
Abstract:Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.




Abstract:Language, as an information medium created by advanced organisms, has always been a concern of neuroscience regarding how it is represented in the brain. Decoding linguistic representations in the evoked brain has shown groundbreaking achievements, thanks to the rapid improvement of neuroimaging, medical technology, life sciences and artificial intelligence. In this work, we present a taxonomy of brain-to-language decoding of both textual and speech formats. This work integrates two types of research: neuroscience focusing on language understanding and deep learning-based brain decoding. Generating discernible language information from brain activity could not only help those with limited articulation, especially amyotrophic lateral sclerosis (ALS) patients but also open up a new way for the next generation's brain-computer interface (BCI). This article will help brain scientists and deep-learning researchers to gain a bird's eye view of fine-grained language perception, and thus facilitate their further investigation and research of neural process and language decoding.
Abstract:In this paper, we introduce a groundbreaking end-to-end (E2E) framework for decoding invasive brain signals, marking a significant advancement in the field of speech neuroprosthesis. Our methodology leverages the comprehensive reasoning abilities of large language models (LLMs) to facilitate direct decoding. By fully integrating LLMs, we achieve results comparable to the state-of-the-art cascade models. Our findings underscore the immense potential of E2E frameworks in speech neuroprosthesis, particularly as the technology behind brain-computer interfaces (BCIs) and the availability of relevant datasets continue to evolve. This work not only showcases the efficacy of combining LLMs with E2E decoding for enhancing speech neuroprosthesis but also sets a new direction for future research in BCI applications, underscoring the impact of LLMs in decoding complex neural signals for communication restoration. Code will be made available at https://github.com/FsFrancis15/BrainLLM.