Virginia Tech
Abstract:Illegal logging poses a significant threat to global biodiversity, climate stability, and depresses international prices for legal wood harvesting and responsible forest products trade, affecting livelihoods and communities across the globe. Stable isotope ratio analysis (SIRA) is rapidly becoming an important tool for determining the harvest location of traded, organic, products. The spatial pattern in stable isotope ratio values depends on factors such as atmospheric and environmental conditions and can thus be used for geographical identification. We present here the results of a deployed machine learning pipeline where we leverage both isotope values and atmospheric variables to determine timber harvest location. Additionally, the pipeline incorporates uncertainty estimation to facilitate the interpretation of harvest location determination for analysts. We present our experiments on a collection of oak (Quercus spp.) tree samples from its global range. Our pipeline outperforms comparable state-of-the-art models determining geographic harvest origin of commercially traded wood products, and has been used by European enforcement agencies to identify illicit Russian and Belarusian timber entering the EU market. We also identify opportunities for further advancement of our framework and how it can be generalized to help identify the origin of falsely labeled organic products throughout the supply chain.
Abstract:Can we trust Large Language Models (LLMs) to accurately predict scam? This paper investigates the vulnerabilities of LLMs when facing adversarial scam messages for the task of scam detection. We addressed this issue by creating a comprehensive dataset with fine-grained labels of scam messages, including both original and adversarial scam messages. The dataset extended traditional binary classes for the scam detection task into more nuanced scam types. Our analysis showed how adversarial examples took advantage of vulnerabilities of a LLM, leading to high misclassification rate. We evaluated the performance of LLMs on these adversarial scam messages and proposed strategies to improve their robustness.
Abstract:Modeling the spatiotemporal nature of the spread of infectious diseases can provide useful intuition in understanding the time-varying aspect of the disease spread and the underlying complex spatial dependency observed in people's mobility patterns. Besides, the county level multiple related time series information can be leveraged to make a forecast on an individual time series. Adding to this challenge is the fact that real-time data often deviates from the unimodal Gaussian distribution assumption and may show some complex mixed patterns. Motivated by this, we develop a deep learning-based time-series model for probabilistic forecasting called Auto-regressive Mixed Density Dynamic Diffusion Network(ARM3Dnet), which considers both people's mobility and disease spread as a diffusion process on a dynamic directed graph. The Gaussian Mixture Model layer is implemented to consider the multimodal nature of the real-time data while learning from multiple related time series. We show that our model, when trained with the best combination of dynamic covariate features and mixture components, can outperform both traditional statistical and deep learning models in forecasting the number of Covid-19 deaths and cases at the county level in the United States.