Abstract:Generative AI has emerged as a transformative paradigm in engineering design, enabling automated synthesis and reconstruction of complex 3D geometries while preserving feasibility and performance relevance. This paper introduces a domain-specific implicit generative framework for turbine blade geometry using DeepSDF, addressing critical gaps in performance-aware modeling and manufacturable design generation. The proposed method leverages a continuous signed distance function (SDF) representation to reconstruct and generate smooth, watertight geometries with quantified accuracy. It establishes an interpretable, near-Gaussian latent space that aligns with blade-relevant parameters, such as taper and chord ratios, enabling controlled exploration and unconditional synthesis through interpolation and Gaussian sampling. In addition, a compact neural network maps engineering descriptors, such as maximum directional strains, to latent codes, facilitating the generation of performance-informed geometry. The framework achieves high reconstruction fidelity, with surface distance errors concentrated within $1\%$ of the maximum blade dimension, and demonstrates robust generalization to unseen designs. By integrating constraints, objectives, and performance metrics, this approach advances beyond traditional 2D-guided or unconstrained 3D pipelines, offering a practical and interpretable solution for data-driven turbine blade modeling and concept generation.
Abstract:Modern engineering and scientific workflows often require simultaneous predictions across related tasks and fidelity levels, where high-fidelity data is scarce and expensive, while low-fidelity data is more abundant. This paper introduces an Multi-Task Gaussian Processes (MTGP) framework tailored for engineering systems characterized by multi-source, multi-fidelity data, addressing challenges of data sparsity and varying task correlations. The proposed framework leverages inter-task relationships across outputs and fidelity levels to improve predictive performance and reduce computational costs. The framework is validated across three representative scenarios: Forrester function benchmark, 3D ellipsoidal void modeling, and friction-stir welding. By quantifying and leveraging inter-task relationships, the proposed MTGP framework offers a robust and scalable solution for predictive modeling in domains with significant computational and experimental costs, supporting informed decision-making and efficient resource utilization.
Abstract:Artificial intelligence and machine learning frameworks have served as computationally efficient mapping between inputs and outputs for engineering problems. These mappings have enabled optimization and analysis routines that have warranted superior designs, ingenious material systems and optimized manufacturing processes. A common occurrence in such modeling endeavors is the existence of multiple source of data, each differentiated by fidelity, operating conditions, experimental conditions, and more. Data fusion frameworks have opened the possibility of combining such differentiated sources into single unified models, enabling improved accuracy and knowledge transfer. However, these frameworks encounter limitations when the different sources are heterogeneous in nature, i.e., not sharing the same input parameter space. These heterogeneous input scenarios can occur when the domains differentiated by complexity, scale, and fidelity require different parametrizations. Towards addressing this void, a heterogeneous multi-source data fusion framework is proposed based on input mapping calibration (IMC) and latent variable Gaussian process (LVGP). In the first stage, the IMC algorithm is utilized to transform the heterogeneous input parameter spaces into a unified reference parameter space. In the second stage, a multi-source data fusion model enabled by LVGP is leveraged to build a single source-aware surrogate model on the transformed reference space. The proposed framework is demonstrated and analyzed on three engineering case studies (design of cantilever beam, design of ellipsoidal void and modeling properties of Ti6Al4V alloy). The results indicate that the proposed framework provides improved predictive accuracy over a single source model and transformed but source unaware model.
Abstract:With the advent of artificial intelligence (AI) and machine learning (ML), various domains of science and engineering communites has leveraged data-driven surrogates to model complex systems from numerous sources of information (data). The proliferation has led to significant reduction in cost and time involved in development of superior systems designed to perform specific functionalities. A high proposition of such surrogates are built extensively fusing multiple sources of data, may it be published papers, patents, open repositories, or other resources. However, not much attention has been paid to the differences in quality and comprehensiveness of the known and unknown underlying physical parameters of the information sources that could have downstream implications during system optimization. Towards resolving this issue, a multi-source data fusion framework based on Latent Variable Gaussian Process (LVGP) is proposed. The individual data sources are tagged as a characteristic categorical variable that are mapped into a physically interpretable latent space, allowing the development of source-aware data fusion modeling. Additionally, a dissimilarity metric based on the latent variables of LVGP is introduced to study and understand the differences in the sources of data. The proposed approach is demonstrated on and analyzed through two mathematical (representative parabola problem, 2D Ackley function) and two materials science (design of FeCrAl and SmCoFe alloys) case studies. From the case studies, it is observed that compared to using single-source and source unaware ML models, the proposed multi-source data fusion framework can provide better predictions for sparse-data problems, interpretability regarding the sources, and enhanced modeling capabilities by taking advantage of the correlations and relationships among different sources.
Abstract:The COVID 19 pandemic and ongoing political and regional conflicts have a highly detrimental impact on the global supply chain, causing significant delays in logistics operations and international shipments. One of the most pressing concerns is the uncertainty surrounding the availability dates of products, which is critical information for companies to generate effective logistics and shipment plans. Therefore, accurately predicting availability dates plays a pivotal role in executing successful logistics operations, ultimately minimizing total transportation and inventory costs. We investigate the prediction of product availability dates for General Electric (GE) Gas Power's inbound shipments for gas and steam turbine service and manufacturing operations, utilizing both numerical and categorical features. We evaluate several regression models, including Simple Regression, Lasso Regression, Ridge Regression, Elastic Net, Random Forest (RF), Gradient Boosting Machine (GBM), and Neural Network models. Based on real world data, our experiments demonstrate that the tree based algorithms (i.e., RF and GBM) provide the best generalization error and outperforms all other regression models tested. We anticipate that our prediction models will assist companies in managing supply chain disruptions and reducing supply chain risks on a broader scale.




Abstract:Modern computational methods, involving highly sophisticated mathematical formulations, enable several tasks like modeling complex physical phenomenon, predicting key properties and design optimization. The higher fidelity in these computer models makes it computationally intensive to query them hundreds of times for optimization and one usually relies on a simplified model albeit at the cost of losing predictive accuracy and precision. Towards this, data-driven surrogate modeling methods have shown a lot of promise in emulating the behavior of the expensive computer models. However, a major bottleneck in such methods is the inability to deal with high input dimensionality and the need for relatively large datasets. With such problems, the input and output quantity of interest are tensors of high dimensionality. Commonly used surrogate modeling methods for such problems, suffer from requirements like high number of computational evaluations that precludes one from performing other numerical tasks like uncertainty quantification and statistical analysis. In this work, we propose an end-to-end approach that maps a high-dimensional image like input to an output of high dimensionality or its key statistics. Our approach uses two main framework that perform three steps: a) reduce the input and output from a high-dimensional space to a reduced or low-dimensional space, b) model the input-output relationship in the low-dimensional space, and c) enable the incorporation of domain-specific physical constraints as masks. In order to accomplish the task of reducing input dimensionality we leverage principal component analysis, that is coupled with two surrogate modeling methods namely: a) Bayesian hybrid modeling, and b) DeepHyper's deep neural networks. We demonstrate the applicability of the approach on a problem of a linear elastic stress field data.