Abstract:The incorporation of Artificial Intelligence (AI) models into various optimization systems is on the rise. Yet, addressing complex urban and environmental management problems normally requires in-depth domain science and informatics expertise. This expertise is essential for deriving data and simulation-driven for informed decision support. In this context, we investigate the potential of leveraging the pre-trained Large Language Models (LLMs). By adopting ChatGPT API as the reasoning core, we outline an integrated workflow that encompasses natural language processing, methontology-based prompt tuning, and transformers. This workflow automates the creation of scenario-based ontology using existing research articles and technical manuals of urban datasets and simulations. The outcomes of our methodology are knowledge graphs in widely adopted ontology languages (e.g., OWL, RDF, SPARQL). These facilitate the development of urban decision support systems by enhancing the data and metadata modeling, the integration of complex datasets, the coupling of multi-domain simulation models, and the formulation of decision-making metrics and workflow. The feasibility of our methodology is evaluated through a comparative analysis that juxtaposes our AI-generated ontology with the well-known Pizza Ontology employed in tutorials for popular ontology software (e.g., prot\'eg\'e). We close with a real-world case study of optimizing the complex urban system of multi-modal freight transportation by generating anthologies of various domain data and simulations to support informed decision-making.
Abstract:The COVID 19 pandemic and ongoing political and regional conflicts have a highly detrimental impact on the global supply chain, causing significant delays in logistics operations and international shipments. One of the most pressing concerns is the uncertainty surrounding the availability dates of products, which is critical information for companies to generate effective logistics and shipment plans. Therefore, accurately predicting availability dates plays a pivotal role in executing successful logistics operations, ultimately minimizing total transportation and inventory costs. We investigate the prediction of product availability dates for General Electric (GE) Gas Power's inbound shipments for gas and steam turbine service and manufacturing operations, utilizing both numerical and categorical features. We evaluate several regression models, including Simple Regression, Lasso Regression, Ridge Regression, Elastic Net, Random Forest (RF), Gradient Boosting Machine (GBM), and Neural Network models. Based on real world data, our experiments demonstrate that the tree based algorithms (i.e., RF and GBM) provide the best generalization error and outperforms all other regression models tested. We anticipate that our prediction models will assist companies in managing supply chain disruptions and reducing supply chain risks on a broader scale.