Marketing and Commercialization Center, JD.com
Abstract:Industrial systems such as recommender systems and online advertising, have been widely equipped with multi-stage architectures, which are divided into several cascaded modules, including matching, pre-ranking, ranking and re-ranking. As a critical bridge between matching and ranking, existing pre-ranking approaches mainly endure sample selection bias (SSB) problem owing to ignoring the entire-chain data dependence, resulting in sub-optimal performances. In this paper, we rethink pre-ranking system from the perspective of the entire sample space, and propose Entire-chain Cross-domain Models (ECM), which leverage samples from the whole cascaded stages to effectively alleviate SSB problem. Besides, we design a fine-grained neural structure named ECMM to further improve the pre-ranking accuracy. Specifically, we propose a cross-domain multi-tower neural network to comprehensively predict for each stage result, and introduce the sub-networking routing strategy with $L0$ regularization to reduce computational costs. Evaluations on real-world large-scale traffic logs demonstrate that our pre-ranking models outperform SOTA methods while time consumption is maintained within an acceptable level, which achieves better trade-off between efficiency and effectiveness.
Abstract:The exposure sequence is being actively studied for user interest modeling in Click-Through Rate (CTR) prediction. However, the existing methods for exposure sequence modeling bring extensive computational burden and neglect noise problems, resulting in an excessively latency and the limited performance in online recommenders. In this paper, we propose to address the high latency and noise problems via Gating-adapted wavelet multiresolution analysis (Gama), which can effectively denoise the extremely long exposure sequence and adaptively capture the implied multi-dimension user interest with linear computational complexity. This is the first attempt to integrate non-parametric multiresolution analysis technique into deep neural networks to model user exposure sequence. Extensive experiments on large scale benchmark dataset and real production dataset confirm the effectiveness of Gama for exposure sequence modeling, especially in cold-start scenarios. Benefited from its low latency and high effecitveness, Gama has been deployed in our real large-scale industrial recommender, successfully serving over hundreds of millions users.
Abstract:Zero-shot detection (ZSD) is crucial to large-scale object detection with the aim of simultaneously localizing and recognizing unseen objects. There remain several challenges for ZSD, including reducing the ambiguity between background and unseen objects as well as improving the alignment between visual and semantic concept. In this work, we propose a novel framework named Background Learnable Cascade (BLC) to improve ZSD performance. The major contributions for BLC are as follows: (i) we propose a multi-stage cascade structure named Cascade Semantic R-CNN to progressively refine the alignment between visual and semantic of ZSD; (ii) we develop the semantic information flow structure and directly add it between each stage in Cascade Semantic RCNN to further improve the semantic feature learning; (iii) we propose the background learnable region proposal network (BLRPN) to learn an appropriate word vector for background class and use this learned vector in Cascade Semantic R CNN, this design makes \Background Learnable" and reduces the confusion between background and unseen classes. Our extensive experiments show BLC obtains significantly performance improvements for MS-COCO over state-of-the-art methods.