Abstract:Skeletal sequences, as well-structured representations of human behaviors, are crucial in Human Activity Recognition (HAR). The transferability of adversarial skeletal sequences enables attacks in real-world HAR scenarios, such as autonomous driving, intelligent surveillance, and human-computer interactions. However, existing Skeleton-based HAR (S-HAR) attacks exhibit weak adversarial transferability and, therefore, cannot be considered true transfer-based S-HAR attacks. More importantly, the reason for this failure remains unclear. In this paper, we study this phenomenon through the lens of loss surface, and find that its sharpness contributes to the poor transferability in S-HAR. Inspired by this observation, we assume and empirically validate that smoothening the rugged loss landscape could potentially improve adversarial transferability in S-HAR. To this end, we propose the first Transfer-based Attack on Skeletal Action Recognition, TASAR. TASAR explores the smoothed model posterior without re-training the pre-trained surrogates, which is achieved by a new post-train Dual Bayesian optimization strategy. Furthermore, unlike previous transfer-based attacks that treat each frame independently and overlook temporal coherence within sequences, TASAR incorporates motion dynamics into the Bayesian attack gradient, effectively disrupting the spatial-temporal coherence of S-HARs. To exhaustively evaluate the effectiveness of existing methods and our method, we build the first large-scale robust S-HAR benchmark, comprising 7 S-HAR models, 10 attack methods, 3 S-HAR datasets and 2 defense models. Extensive results demonstrate the superiority of TASAR. Our benchmark enables easy comparisons for future studies, with the code available in the supplementary material.
Abstract:Skeletal motion plays a pivotal role in human activity recognition (HAR). Recently, attack methods have been proposed to identify the universal vulnerability of skeleton-based HAR(S-HAR). However, the research of adversarial transferability on S-HAR is largely missing. More importantly, existing attacks all struggle in transfer across unknown S-HAR models. We observed that the key reason is that the loss landscape of the action recognizers is rugged and sharp. Given the established correlation in prior studies~\cite{qin2022boosting,wu2020towards} between loss landscape and adversarial transferability, we assume and empirically validate that smoothing the loss landscape could potentially improve adversarial transferability on S-HAR. This is achieved by proposing a new post-train Dual Bayesian strategy, which can effectively explore the model posterior space for a collection of surrogates without the need for re-training. Furthermore, to craft adversarial examples along the motion manifold, we incorporate the attack gradient with information of the motion dynamics in a Bayesian manner. Evaluated on benchmark datasets, e.g. HDM05 and NTU 60, the average transfer success rate can reach as high as 35.9\% and 45.5\% respectively. In comparison, current state-of-the-art skeletal attacks achieve only 3.6\% and 9.8\%. The high adversarial transferability remains consistent across various surrogate, victim, and even defense models. Through a comprehensive analysis of the results, we provide insights on what surrogates are more likely to exhibit transferability, to shed light on future research.
Abstract:Collecting traffic data is crucial for transportation systems and urban planning, and is often more desirable through easy-to-deploy but power-constrained devices, due to the unavailability or high cost of power and network infrastructure. The limited power means an inevitable trade-off between data collection duration and accuracy/resolution. We introduce a novel learning-based framework that strategically decides observation timings for battery-powered devices and reconstructs the full data stream from sparsely sampled observations, resulting in minimal performance loss and a significantly prolonged system lifetime. Our framework comprises a predictor, a controller, and an estimator. The predictor utilizes historical data to forecast future trends within a fixed time horizon. The controller uses the forecasts to determine the next optimal timing for data collection. Finally, the estimator reconstructs the complete data profile from the sampled observations. We evaluate the performance of the proposed method on PeMS data by an RNN (Recurrent Neural Network) predictor and estimator, and a DRQN (Deep Recurrent Q-Network) controller, and compare it against the baseline that uses Kalman filter and uniform sampling. The results indicate that our method outperforms the baseline, primarily due to the inclusion of more representative data points in the profile, resulting in an overall 10\% improvement in estimation accuracy. Source code will be publicly available.
Abstract:Segmentation of nodules in thyroid ultrasound imaging plays a crucial role in the detection and treatment of thyroid cancer. However, owing to the diversity of scanner vendors and imaging protocols in different hospitals, the automatic segmentation model, which has already demonstrated expert-level accuracy in the field of medical image segmentation, finds its accuracy reduced as the result of its weak generalization performance when being applied in clinically realistic environments. To address this issue, the present paper proposes ASTN, a framework for thyroid nodule segmentation achieved through a new type co-registration network. By extracting latent semantic information from the atlas and target images and utilizing in-depth features to accomplish the co-registration of nodules in thyroid ultrasound images, this framework can ensure the integrity of anatomical structure and reduce the impact on segmentation as the result of overall differences in image caused by different devices. In addition, this paper also provides an atlas selection algorithm to mitigate the difficulty of co-registration. As shown by the evaluation results collected from the datasets of different devices, thanks to the method we proposed, the model generalization has been greatly improved while maintaining a high level of segmentation accuracy.