Abstract:Vision Language Models (VLMs) have recently been adopted in robotics for their capability in common sense reasoning and generalizability. Existing work has applied VLMs to generate task and motion planning from natural language instructions and simulate training data for robot learning. In this work, we explore using VLM to interpret human demonstration videos and generate robot task planning. Our method integrates keyframe selection, visual perception, and VLM reasoning into a pipeline. We named it SeeDo because it enables the VLM to ''see'' human demonstrations and explain the corresponding plans to the robot for it to ''do''. To validate our approach, we collected a set of long-horizon human videos demonstrating pick-and-place tasks in three diverse categories and designed a set of metrics to comprehensively benchmark SeeDo against several baselines, including state-of-the-art video-input VLMs. The experiments demonstrate SeeDo's superior performance. We further deployed the generated task plans in both a simulation environment and on a real robot arm.
Abstract:In this study, we introduce "CosmoAgent," an innovative artificial intelligence framework utilizing Large Language Models (LLMs) to simulate complex interactions between human and extraterrestrial civilizations, with a special emphasis on Stephen Hawking's cautionary advice about not sending radio signals haphazardly into the universe. The goal is to assess the feasibility of peaceful coexistence while considering potential risks that could threaten well-intentioned civilizations. Employing mathematical models and state transition matrices, our approach quantitatively evaluates the development trajectories of civilizations, offering insights into future decision-making at critical points of growth and saturation. Furthermore, the paper acknowledges the vast diversity in potential living conditions across the universe, which could foster unique cosmologies, ethical codes, and worldviews among various civilizations. Recognizing the Earth-centric bias inherent in current LLM designs, we propose the novel concept of using LLMs with diverse ethical paradigms and simulating interactions between entities with distinct moral principles. This innovative research provides a new way to understand complex inter-civilizational dynamics, expanding our perspective while pioneering novel strategies for conflict resolution, crucial for preventing interstellar conflicts. We have also released the code and datasets to enable further academic investigation into this interesting area of research. The code is available at https://github.com/agiresearch/AlienAgent.
Abstract:In our research, we pioneer a novel approach to evaluate the effectiveness of jailbreak attacks on Large Language Models (LLMs), such as GPT-4 and LLaMa2, diverging from traditional robustness-focused binary evaluations. Our study introduces two distinct evaluation frameworks: a coarse-grained evaluation and a fine-grained evaluation. Each framework, using a scoring range from 0 to 1, offers a unique perspective, enabling a more comprehensive and nuanced evaluation of attack effectiveness and empowering attackers to refine their attack prompts with greater understanding. Furthermore, we have developed a comprehensive ground truth dataset specifically tailored for jailbreak tasks. This dataset not only serves as a crucial benchmark for our current study but also establishes a foundational resource for future research, enabling consistent and comparative analyses in this evolving field. Upon meticulous comparison with traditional evaluation methods, we discovered that our evaluation aligns with the baseline's trend while offering a more profound and detailed assessment. We believe that by accurately evaluating the effectiveness of attack prompts in the Jailbreak task, our work lays a solid foundation for assessing a wider array of similar or even more complex tasks in the realm of prompt injection, potentially revolutionizing this field.