Abstract:Place recognition plays a crucial role in the fields of robotics and computer vision, finding applications in areas such as autonomous driving, mapping, and localization. Place recognition identifies a place using query sensor data and a known database. One of the main challenges is to develop a model that can deliver accurate results while being robust to environmental variations. We propose two multi-modal place recognition models, namely PRFusion and PRFusion++. PRFusion utilizes global fusion with manifold metric attention, enabling effective interaction between features without requiring camera-LiDAR extrinsic calibrations. In contrast, PRFusion++ assumes the availability of extrinsic calibrations and leverages pixel-point correspondences to enhance feature learning on local windows. Additionally, both models incorporate neural diffusion layers, which enable reliable operation even in challenging environments. We verify the state-of-the-art performance of both models on three large-scale benchmarks. Notably, they outperform existing models by a substantial margin of +3.0 AR@1 on the demanding Boreas dataset. Furthermore, we conduct ablation studies to validate the effectiveness of our proposed methods. The codes are available at: https://github.com/sijieaaa/PRFusion
Abstract:Personalized subgraph Federated Learning (FL) is a task that customizes Graph Neural Networks (GNNs) to individual client needs, accommodating diverse data distributions. However, applying hypernetworks in FL, while aiming to facilitate model personalization, often encounters challenges due to inadequate representation of client-specific characteristics. To overcome these limitations, we propose a model called FedSheafHN, using enhanced collaboration graph embedding and efficient personalized model parameter generation. Specifically, our model embeds each client's local subgraph into a server-constructed collaboration graph. We utilize sheaf diffusion in the collaboration graph to learn client representations. Our model improves the integration and interpretation of complex client characteristics. Furthermore, our model ensures the generation of personalized models through advanced hypernetworks optimized for parallel operations across clients. Empirical evaluations demonstrate that FedSheafHN outperforms existing methods in most scenarios, in terms of client model performance on various graph-structured datasets. It also has fast model convergence and effective new clients generalization.
Abstract:Point cloud registration is a fundamental technique in 3-D computer vision with applications in graphics, autonomous driving, and robotics. However, registration tasks under challenging conditions, under which noise or perturbations are prevalent, can be difficult. We propose a robust point cloud registration approach that leverages graph neural partial differential equations (PDEs) and heat kernel signatures. Our method first uses graph neural PDE modules to extract high dimensional features from point clouds by aggregating information from the 3-D point neighborhood, thereby enhancing the robustness of the feature representations. Then, we incorporate heat kernel signatures into an attention mechanism to efficiently obtain corresponding keypoints. Finally, a singular value decomposition (SVD) module with learnable weights is used to predict the transformation between two point clouds. Empirical experiments on a 3-D point cloud dataset demonstrate that our approach not only achieves state-of-the-art performance for point cloud registration but also exhibits better robustness to additive noise or 3-D shape perturbations.
Abstract:In this work, we rigorously investigate the robustness of graph neural fractional-order differential equation (FDE) models. This framework extends beyond traditional graph neural (integer-order) ordinary differential equation (ODE) models by implementing the time-fractional Caputo derivative. Utilizing fractional calculus allows our model to consider long-term memory during the feature updating process, diverging from the memoryless Markovian updates seen in traditional graph neural ODE models. The superiority of graph neural FDE models over graph neural ODE models has been established in environments free from attacks or perturbations. While traditional graph neural ODE models have been verified to possess a degree of stability and resilience in the presence of adversarial attacks in existing literature, the robustness of graph neural FDE models, especially under adversarial conditions, remains largely unexplored. This paper undertakes a detailed assessment of the robustness of graph neural FDE models. We establish a theoretical foundation outlining the robustness characteristics of graph neural FDE models, highlighting that they maintain more stringent output perturbation bounds in the face of input and graph topology disturbances, compared to their integer-order counterparts. Our empirical evaluations further confirm the enhanced robustness of graph neural FDE models, highlighting their potential in adversarially robust applications.
Abstract:Point cloud registration is a crucial technique in 3D computer vision with a wide range of applications. However, this task can be challenging, particularly in large fields of view with dynamic objects, environmental noise, or other perturbations. To address this challenge, we propose a model called PosDiffNet. Our approach performs hierarchical registration based on window-level, patch-level, and point-level correspondence. We leverage a graph neural partial differential equation (PDE) based on Beltrami flow to obtain high-dimensional features and position embeddings for point clouds. We incorporate position embeddings into a Transformer module based on a neural ordinary differential equation (ODE) to efficiently represent patches within points. We employ the multi-level correspondence derived from the high feature similarity scores to facilitate alignment between point clouds. Subsequently, we use registration methods such as SVD-based algorithms to predict the transformation using corresponding point pairs. We evaluate PosDiffNet on several 3D point cloud datasets, verifying that it achieves state-of-the-art (SOTA) performance for point cloud registration in large fields of view with perturbations. The implementation code of experiments is available at https://github.com/AI-IT-AVs/PosDiffNet.
Abstract:The utilization of multi-modal sensor data in visual place recognition (VPR) has demonstrated enhanced performance compared to single-modal counterparts. Nonetheless, integrating additional sensors comes with elevated costs and may not be feasible for systems that demand lightweight operation, thereby impacting the practical deployment of VPR. To address this issue, we resort to knowledge distillation, which empowers single-modal students to learn from cross-modal teachers without introducing additional sensors during inference. Despite the notable advancements achieved by current distillation approaches, the exploration of feature relationships remains an under-explored area. In order to tackle the challenge of cross-modal distillation in VPR, we present DistilVPR, a novel distillation pipeline for VPR. We propose leveraging feature relationships from multiple agents, including self-agents and cross-agents for teacher and student neural networks. Furthermore, we integrate various manifolds, characterized by different space curvatures for exploring feature relationships. This approach enhances the diversity of feature relationships, including Euclidean, spherical, and hyperbolic relationship modules, thereby enhancing the overall representational capacity. The experiments demonstrate that our proposed pipeline achieves state-of-the-art performance compared to other distillation baselines. We also conduct necessary ablation studies to show design effectiveness. The code is released at: https://github.com/sijieaaa/DistilVPR
Abstract:Channel capacity estimation plays a crucial role in beyond 5G intelligent communications. Despite its significance, this task is challenging for a majority of channels, especially for the complex channels not modeled as the well-known typical ones. Recently, neural networks have been used in mutual information estimation and optimization. They are particularly considered as efficient tools for learning channel capacity. In this paper, we propose a cooperative framework to simultaneously estimate channel capacity and design the optimal codebook. First, we will leverage MIM-based GAN, a novel form of generative adversarial network (GAN) using message importance measure (MIM) as the information distance, into mutual information estimation, and develop a novel method, named MIM-based mutual information estimator (MMIE). Then, we design a generalized cooperative framework for channel capacity learning, in which a generator is regarded as an encoder producing the channel input, while a discriminator is the mutual information estimator that assesses the performance of the generator. Through the adversarial training, the generator automatically learns the optimal codebook and the discriminator estimates the channel capacity. Numerical experiments will demonstrate that compared with several conventional estimators, the MMIE achieves state-of-the-art performance in terms of accuracy and stability.
Abstract:Matching landmark patches from a real-time image captured by an on-vehicle camera with landmark patches in an image database plays an important role in various computer perception tasks for autonomous driving. Current methods focus on local matching for regions of interest and do not take into account spatial neighborhood relationships among the image patches, which typically correspond to objects in the environment. In this paper, we construct a spatial graph with the graph vertices corresponding to patches and edges capturing the spatial neighborhood information. We propose a joint feature and metric learning model with graph-based learning. We provide a theoretical basis for the graph-based loss by showing that the information distance between the distributions conditioned on matched and unmatched pairs is maximized under our framework. We evaluate our model using several street-scene datasets and demonstrate that our approach achieves state-of-the-art matching results.
Abstract:For autonomous vehicles (AVs), visual perception techniques based on sensors like cameras play crucial roles in information acquisition and processing. In various computer perception tasks for AVs, it may be helpful to match landmark patches taken by an onboard camera with other landmark patches captured at a different time or saved in a street scene image database. To perform matching under challenging driving environments caused by changing seasons, weather, and illumination, we utilize the spatial neighborhood information of each patch. We propose an approach, named RobustMat, which derives its robustness to perturbations from neural differential equations. A convolutional neural ODE diffusion module is used to learn the feature representation for the landmark patches. A graph neural PDE diffusion module then aggregates information from neighboring landmark patches in the street scene. Finally, feature similarity learning outputs the final matching score. Our approach is evaluated on several street scene datasets and demonstrated to achieve state-of-the-art matching results under environmental perturbations.
Abstract:Graph neural networks (GNNs) are vulnerable to adversarial perturbations, including those that affect both node features and graph topology. This paper investigates GNNs derived from diverse neural flows, concentrating on their connection to various stability notions such as BIBO stability, Lyapunov stability, structural stability, and conservative stability. We argue that Lyapunov stability, despite its common use, does not necessarily ensure adversarial robustness. Inspired by physics principles, we advocate for the use of conservative Hamiltonian neural flows to construct GNNs that are robust to adversarial attacks. The adversarial robustness of different neural flow GNNs is empirically compared on several benchmark datasets under a variety of adversarial attacks. Extensive numerical experiments demonstrate that GNNs leveraging conservative Hamiltonian flows with Lyapunov stability substantially improve robustness against adversarial perturbations. The implementation code of experiments is available at https://github.com/zknus/NeurIPS-2023-HANG-Robustness.