Abstract:This paper presents the first empirical study of a vulnerability detection and fix tool with professional software developers on real projects that they own. We implemented DeepVulGuard, an IDE-integrated tool based on state-of-the-art detection and fix models, and show that it has promising performance on benchmarks of historic vulnerability data. DeepVulGuard scans code for vulnerabilities (including identifying the vulnerability type and vulnerable region of code), suggests fixes, provides natural-language explanations for alerts and fixes, leveraging chat interfaces. We recruited 17 professional software developers at Microsoft, observed their usage of the tool on their code, and conducted interviews to assess the tool's usefulness, speed, trust, relevance, and workflow integration. We also gathered detailed qualitative feedback on users' perceptions and their desired features. Study participants scanned a total of 24 projects, 6.9k files, and over 1.7 million lines of source code, and generated 170 alerts and 50 fix suggestions. We find that although state-of-the-art AI-powered detection and fix tools show promise, they are not yet practical for real-world use due to a high rate of false positives and non-applicable fixes. User feedback reveals several actionable pain points, ranging from incomplete context to lack of customization for the user's codebase. Additionally, we explore how AI features, including confidence scores, explanations, and chat interaction, can apply to vulnerability detection and fixing. Based on these insights, we offer practical recommendations for evaluating and deploying AI detection and fix models. Our code and data are available at https://doi.org/10.6084/m9.figshare.26367139.
Abstract:The landscape of software development has witnessed a paradigm shift with the advent of AI-powered assistants, exemplified by GitHub Copilot. However, existing solutions are not leveraging all the potential capabilities available in an IDE such as building, testing, executing code, git operations, etc. Therefore, they are constrained by their limited capabilities, primarily focusing on suggesting code snippets and file manipulation within a chat-based interface. To fill this gap, we present AutoDev, a fully automated AI-driven software development framework, designed for autonomous planning and execution of intricate software engineering tasks. AutoDev enables users to define complex software engineering objectives, which are assigned to AutoDev's autonomous AI Agents to achieve. These AI agents can perform diverse operations on a codebase, including file editing, retrieval, build processes, execution, testing, and git operations. They also have access to files, compiler output, build and testing logs, static analysis tools, and more. This enables the AI Agents to execute tasks in a fully automated manner with a comprehensive understanding of the contextual information required. Furthermore, AutoDev establishes a secure development environment by confining all operations within Docker containers. This framework incorporates guardrails to ensure user privacy and file security, allowing users to define specific permitted or restricted commands and operations within AutoDev. In our evaluation, we tested AutoDev on the HumanEval dataset, obtaining promising results with 91.5% and 87.8% of Pass@1 for code generation and test generation respectively, demonstrating its effectiveness in automating software engineering tasks while maintaining a secure and user-controlled development environment.
Abstract:The integration of Large Language Models (LLMs) into Development Environments (IDEs) has become a focal point in modern software development. LLMs such as OpenAI GPT-3.5/4 and Code Llama offer the potential to significantly augment developer productivity by serving as intelligent, chat-driven programming assistants. However, utilizing LLMs out of the box is unlikely to be optimal for any given scenario. Rather, each system requires the LLM to be honed to its set of heuristics to ensure the best performance. In this paper, we introduce the Copilot evaluation harness: a set of data and tools for evaluating LLM-guided IDE interactions, covering various programming scenarios and languages. We propose our metrics as a more robust and information-dense evaluation than previous state of the art evaluation systems. We design and compute both static and execution based success metrics for scenarios encompassing a wide range of developer tasks, including code generation from natural language (generate), documentation generation from code (doc), test case generation (test), bug-fixing (fix), and workspace understanding and query resolution (workspace). These success metrics are designed to evaluate the performance of LLMs within a given IDE and its respective parameter space. Our learnings from evaluating three common LLMs using these metrics can inform the development and validation of future scenarios in LLM guided IDEs.
Abstract:Performance bugs are non-functional bugs that can even manifest in well-tested commercial products. Fixing these performance bugs is an important yet challenging problem. In this work, we address this challenge and present a new approach called Retrieval-Augmented Prompt Generation (RAPGen). Given a code snippet with a performance issue, RAPGen first retrieves a prompt instruction from a pre-constructed knowledge-base of previous performance bug fixes and then generates a prompt using the retrieved instruction. It then uses this prompt on a Large Language Model (such as Codex) in zero-shot to generate a fix. We compare our approach with the various prompt variations and state of the art methods in the task of performance bug fixing. Our evaluation shows that RAPGen can generate performance improvement suggestions equivalent or better than a developer in ~60% of the cases, getting ~39% of them verbatim, in an expert-verified dataset of past performance changes made by C# developers.
Abstract:Improving software performance is an important yet challenging part of the software development cycle. Today, the majority of performance inefficiencies are identified and patched by performance experts. Recent advancements in deep learning approaches and the wide-spread availability of open source data creates a great opportunity to automate the identification and patching of performance problems. In this paper, we present DeepPERF, a transformer-based approach to suggest performance improvements for C# applications. We pretrain DeepPERF on English and Source code corpora and followed by finetuning for the task of generating performance improvement patches for C# applications. Our evaluation shows that our model can generate the same performance improvement suggestion as the developer fix in ~53% of the cases, getting ~34% of them verbatim in our expert-verified dataset of performance changes made by C# developers. Additionally, we evaluate DeepPERF on 50 open source C# repositories on GitHub using both benchmark and unit tests and find that our model is able to suggest valid performance improvements that can improve both CPU usage and Memory allocations. So far we've submitted 19 pull-requests with 28 different performance optimizations and 11 of these PRs have been approved by the project owners.
Abstract:Continuous evolution in modern software often causes documentation, tutorials, and examples to be out of sync with changing interfaces and frameworks. Relying on outdated documentation and examples can lead programs to fail or be less efficient or even less secure. In response, programmers need to regularly turn to other resources on the web such as StackOverflow for examples to guide them in writing software. We recognize that this inconvenient, error-prone, and expensive process can be improved by using machine learning applied to software usage data. In this paper, we present our practical system which uses machine learning on large-scale telemetry data and documentation corpora, generating appropriate and complex examples that can be used to improve documentation. We discuss both feature-based and transformer-based machine learning approaches and demonstrate that our system achieves 100% coverage for the used functionalities in the product, providing up-to-date examples upon every release and reduces the numbers of PRs submitted by software owners writing and editing documentation by >68%. We also share valuable lessons learnt during the 3 years that our production quality system has been deployed for Azure Cloud Command Line Interface (Azure CLI).
Abstract:Due to increasingly complex software design and rapid iterative development, code defects and security vulnerabilities are prevalent in modern software. In response, programmers rely on static analysis tools to regularly scan their codebases and find potential bugs. In order to maximize coverage, however, these tools generally tend to report a significant number of false positives, requiring developers to manually verify each warning. To address this problem, we propose a Transformer-based learning approach to identify false positive bug warnings. We demonstrate that our models can improve the precision of static analysis by 17.5%. In addition, we validated the generalizability of this approach across two major bug types: null dereference and resource leak.