Abstract:We introduce BRIDGET, a novel human-in-the-loop system for hybrid decision-making, aiding the user to label records from an un-labeled dataset, attempting to ``bridge the gap'' between the two most popular Hybrid Decision-Making paradigms: those featuring the human in a leading position, and the other with a machine making most of the decisions. BRIDGET understands when either a machine or a human user should be in charge, dynamically switching between two statuses. In the different statuses, BRIDGET still fosters the human-AI interaction, either having a machine learning model assuming skeptical stances towards the user and offering them suggestions, or towards itself and calling the user back. We believe our proposal lays the groundwork for future synergistic systems involving a human and a machine decision-makers.
Abstract:Everyday we increasingly rely on machine learning models to automate and support high-stake tasks and decisions. This growing presence means that humans are now constantly interacting with machine learning-based systems, training and using models everyday. Several different techniques in computer science literature account for the human interaction with machine learning systems, but their classification is sparse and the goals varied. This survey proposes a taxonomy of Hybrid Decision Making Systems, providing both a conceptual and technical framework for understanding how current computer science literature models interaction between humans and machines.