Abstract:Multimodal AI models capable of associating images and text hold promise for numerous domains, ranging from automated image captioning to accessibility applications for blind and low-vision users. However, uncertainty about bias has in some cases limited their adoption and availability. In the present work, we study 43 CLIP vision-language models to determine whether they learn human-like facial impression biases, and we find evidence that such biases are reflected across three distinct CLIP model families. We show for the first time that the the degree to which a bias is shared across a society predicts the degree to which it is reflected in a CLIP model. Human-like impressions of visually unobservable attributes, like trustworthiness and sexuality, emerge only in models trained on the largest dataset, indicating that a better fit to uncurated cultural data results in the reproduction of increasingly subtle social biases. Moreover, we use a hierarchical clustering approach to show that dataset size predicts the extent to which the underlying structure of facial impression bias resembles that of facial impression bias in humans. Finally, we show that Stable Diffusion models employing CLIP as a text encoder learn facial impression biases, and that these biases intersect with racial biases in Stable Diffusion XL-Turbo. While pretrained CLIP models may prove useful for scientific studies of bias, they will also require significant dataset curation when intended for use as general-purpose models in a zero-shot setting.
Abstract:This research introduces the Multilevel Embedding Association Test (ML-EAT), a method designed for interpretable and transparent measurement of intrinsic bias in language technologies. The ML-EAT addresses issues of ambiguity and difficulty in interpreting the traditional EAT measurement by quantifying bias at three levels of increasing granularity: the differential association between two target concepts with two attribute concepts; the individual effect size of each target concept with two attribute concepts; and the association between each individual target concept and each individual attribute concept. Using the ML-EAT, this research defines a taxonomy of EAT patterns describing the nine possible outcomes of an embedding association test, each of which is associated with a unique EAT-Map, a novel four-quadrant visualization for interpreting the ML-EAT. Empirical analysis of static and diachronic word embeddings, GPT-2 language models, and a CLIP language-and-image model shows that EAT patterns add otherwise unobservable information about the component biases that make up an EAT; reveal the effects of prompting in zero-shot models; and can also identify situations when cosine similarity is an ineffective metric, rendering an EAT unreliable. Our work contributes a method for rendering bias more observable and interpretable, improving the transparency of computational investigations into human minds and societies.
Abstract:Popular and news media often portray teenagers with sensationalism, as both a risk to society and at risk from society. As AI begins to absorb some of the epistemic functions of traditional media, we study how teenagers in two countries speaking two languages: 1) are depicted by AI, and 2) how they would prefer to be depicted. Specifically, we study the biases about teenagers learned by static word embeddings (SWEs) and generative language models (GLMs), comparing these with the perspectives of adolescents living in the U.S. and Nepal. We find English-language SWEs associate teenagers with societal problems, and more than 50% of the 1,000 words most associated with teenagers in the pretrained GloVe SWE reflect such problems. Given prompts about teenagers, 30% of outputs from GPT2-XL and 29% from LLaMA-2-7B GLMs discuss societal problems, most commonly violence, but also drug use, mental illness, and sexual taboo. Nepali models, while not free of such associations, are less dominated by social problems. Data from workshops with N=13 U.S. adolescents and N=18 Nepalese adolescents show that AI presentations are disconnected from teenage life, which revolves around activities like school and friendship. Participant ratings of how well 20 trait words describe teens are decorrelated from SWE associations, with Pearson's r=.02, n.s. in English FastText and r=.06, n.s. in GloVe; and r=.06, n.s. in Nepali FastText and r=-.23, n.s. in GloVe. U.S. participants suggested AI could fairly present teens by highlighting diversity, while Nepalese participants centered positivity. Participants were optimistic that, if it learned from adolescents, rather than media sources, AI could help mitigate stereotypes. Our work offers an understanding of the ways SWEs and GLMs misrepresent a developmentally vulnerable group and provides a template for less sensationalized characterization.
Abstract:Calls to use open generative language models in academic research have highlighted the need for reproducibility and transparency in scientific research. However, the impact of generative AI extends well beyond academia, as corporations and public interest organizations have begun integrating these models into their data science pipelines. We expand this lens to include the impact of open models on organizations, focusing specifically on fact-checking organizations, which use AI to observe and analyze large volumes of circulating misinformation, yet must also ensure the reproducibility and impartiality of their work. We wanted to understand where fact-checking organizations use open models in their data science pipelines; what motivates their use of open models or proprietary models; and how their use of open or proprietary models can inform research on the societal impact of generative AI. To answer these questions, we conducted an interview study with N=24 professionals at 20 fact-checking organizations on six continents. Based on these interviews, we offer a five-component conceptual model of where fact-checking organizations employ generative AI to support or automate parts of their data science pipeline, including Data Ingestion, Data Analysis, Data Retrieval, Data Delivery, and Data Sharing. We then provide taxonomies of fact-checking organizations' motivations for using open models and the limitations that prevent them for further adopting open models, finding that they prefer open models for Organizational Autonomy, Data Privacy and Ownership, Application Specificity, and Capability Transparency. However, they nonetheless use proprietary models due to perceived advantages in Performance, Usability, and Safety, as well as Opportunity Costs related to participation in emerging generative AI ecosystems. Our work provides novel perspective on open models in data-driven organizations.
Abstract:The rapid proliferation of generative AI has raised questions about the competitiveness of lower-parameter, locally tunable, open-weight models relative to high-parameter, API-guarded, closed-weight models in terms of performance, domain adaptation, cost, and generalization. Centering under-resourced yet risk-intolerant settings in government, research, and healthcare, we see for-profit closed-weight models as incompatible with requirements for transparency, privacy, adaptability, and standards of evidence. Yet the performance penalty in using open-weight models, especially in low-data and low-resource settings, is unclear. We assess the feasibility of using smaller, open-weight models to replace GPT-4-Turbo in zero-shot, few-shot, and fine-tuned regimes, assuming access to only a single, low-cost GPU. We assess value-sensitive issues around bias, privacy, and abstention on three additional tasks relevant to those topics. We find that with relatively low effort, very low absolute monetary cost, and relatively little data for fine-tuning, small open-weight models can achieve competitive performance in domain-adapted tasks without sacrificing generality. We then run experiments considering practical issues in bias, privacy, and hallucination risk, finding that open models offer several benefits over closed models. We intend this work as a case study in understanding the opportunity cost of reproducibility and transparency over for-profit state-of-the-art zero shot performance, finding this cost to be marginal under realistic settings.
Abstract:Generative AI appears poised to transform white collar professions, with more than 90% of Fortune 500 companies using OpenAI's flagship GPT models, which have been characterized as "general purpose technologies" capable of effecting epochal changes in the economy. But how will such technologies impact organizations whose job is to verify and report factual information, and to ensure the health of the information ecosystem? To investigate this question, we conducted 30 interviews with N=38 participants working at 29 fact-checking organizations across six continents, asking about how they use generative AI and the opportunities and challenges they see in the technology. We found that uses of generative AI envisioned by fact-checkers differ based on organizational infrastructure, with applications for quality assurance in Editing, for trend analysis in Investigation, and for information literacy in Advocacy. We used the TOE framework to describe participant concerns ranging from the Technological (lack of transparency), to the Organizational (resource constraints), to the Environmental (uncertain and evolving policy). Building on the insights of our participants, we describe value tensions between fact-checking and generative AI, and propose a novel Verification dimension to the design space of generative models for information verification work. Finally, we outline an agenda for fairness, accountability, and transparency research to support the responsible use of generative AI in fact-checking. Throughout, we highlight the importance of human infrastructure and labor in producing verified information in collaboration with AI. We expect that this work will inform not only the scientific literature on fact-checking, but also contribute to understanding of organizational adaptation to a powerful but unreliable new technology.
Abstract:Language models are trained on large-scale corpora that embed implicit biases documented in psychology. Valence associations (pleasantness/unpleasantness) of social groups determine the biased attitudes towards groups and concepts in social cognition. Building on this established literature, we quantify how social groups are valenced in English language models using a sentence template that provides an intersectional context. We study biases related to age, education, gender, height, intelligence, literacy, race, religion, sex, sexual orientation, social class, and weight. We present a concept projection approach to capture the valence subspace through contextualized word embeddings of language models. Adapting the projection-based approach to embedding association tests that quantify bias, we find that language models exhibit the most biased attitudes against gender identity, social class, and sexual orientation signals in language. We find that the largest and better-performing model that we study is also more biased as it effectively captures bias embedded in sociocultural data. We validate the bias evaluation method by overperforming on an intrinsic valence evaluation task. The approach enables us to measure complex intersectional biases as they are known to manifest in the outputs and applications of language models that perpetuate historical biases. Moreover, our approach contributes to design justice as it studies the associations of groups underrepresented in language such as transgender and homosexual individuals.
Abstract:Nine language-vision AI models trained on web scrapes with the Contrastive Language-Image Pretraining (CLIP) objective are evaluated for evidence of a bias studied by psychologists: the sexual objectification of girls and women, which occurs when a person's human characteristics are disregarded and the person is treated as a body or a collection of body parts. A first experiment uses standardized images of women from the Sexual OBjectification and EMotion Database, and finds that, commensurate with prior research in psychology, human characteristics are disassociated from images of objectified women: the model's recognition of emotional state is mediated by whether the subject is fully or partially clothed. Embedding association tests (EATs) return significant effect sizes for both anger (d >.8) and sadness (d >.5). A second experiment measures the effect in a representative application: an automatic image captioner (Antarctic Captions) includes words denoting emotion less than 50% as often for images of partially clothed women than for images of fully clothed women. A third experiment finds that images of female professionals (scientists, doctors, executives) are likely to be associated with sexual descriptions relative to images of male professionals. A fourth experiment shows that a prompt of "a [age] year old girl" generates sexualized images (as determined by an NSFW classifier) up to 73% of the time for VQGAN-CLIP (age 17), and up to 40% of the time for Stable Diffusion (ages 14 and 18); the corresponding rate for boys never surpasses 9%. The evidence indicates that language-vision AI models trained on automatically collected web scrapes learn biases of sexual objectification, which propagate to downstream applications.
Abstract:Three state-of-the-art language-and-image AI models, CLIP, SLIP, and BLIP, are evaluated for evidence of a bias previously observed in social and experimental psychology: equating American identity with being White. Embedding association tests (EATs) using standardized images of self-identified Asian, Black, Latina/o, and White individuals from the Chicago Face Database (CFD) reveal that White individuals are more associated with collective in-group words than are Asian, Black, or Latina/o individuals. In assessments of three core aspects of American identity reported by social psychologists, single-category EATs reveal that images of White individuals are more associated with patriotism and with being born in America, but that, consistent with prior findings in psychology, White individuals are associated with being less likely to treat people of all races and backgrounds equally. Three downstream machine learning tasks demonstrate biases associating American with White. In a visual question answering task using BLIP, 97% of White individuals are identified as American, compared to only 3% of Asian individuals. When asked in what state the individual depicted lives in, the model responds China 53% of the time for Asian individuals, but always with an American state for White individuals. In an image captioning task, BLIP remarks upon the race of Asian individuals as much as 36% of the time, but never remarks upon race for White individuals. Finally, provided with an initialization image from the CFD and the text "an American person," a synthetic image generator (VQGAN) using the text-based guidance of CLIP lightens the skin tone of individuals of all races (by 35% for Black individuals, based on pixel brightness). The results indicate that biases equating American identity with being White are learned by language-and-image AI, and propagate to downstream applications of such models.
Abstract:The statistical regularities in language corpora encode well-known social biases into word embeddings. Here, we focus on gender to provide a comprehensive analysis of group-based biases in widely-used static English word embeddings trained on internet corpora (GloVe 2014, fastText 2017). Using the Single-Category Word Embedding Association Test, we demonstrate the widespread prevalence of gender biases that also show differences in: (1) frequencies of words associated with men versus women; (b) part-of-speech tags in gender-associated words; (c) semantic categories in gender-associated words; and (d) valence, arousal, and dominance in gender-associated words. First, in terms of word frequency: we find that, of the 1,000 most frequent words in the vocabulary, 77% are more associated with men than women, providing direct evidence of a masculine default in the everyday language of the English-speaking world. Second, turning to parts-of-speech: the top male-associated words are typically verbs (e.g., fight, overpower) while the top female-associated words are typically adjectives and adverbs (e.g., giving, emotionally). Gender biases in embeddings also permeate parts-of-speech. Third, for semantic categories: bottom-up, cluster analyses of the top 1,000 words associated with each gender. The top male-associated concepts include roles and domains of big tech, engineering, religion, sports, and violence; in contrast, the top female-associated concepts are less focused on roles, including, instead, female-specific slurs and sexual content, as well as appearance and kitchen terms. Fourth, using human ratings of word valence, arousal, and dominance from a ~20,000 word lexicon, we find that male-associated words are higher on arousal and dominance, while female-associated words are higher on valence.