Abstract:Automated machine learning (AutoML) streamlines the creation of ML models. While most methods select the "best" model based on predictive quality, it's crucial to acknowledge other aspects, such as interpretability and resource consumption. This holds particular importance in the context of deep neural networks (DNNs), as these models are often perceived as computationally intensive black boxes. In the challenging domain of time series forecasting, DNNs achieve stunning results, but specialized approaches for automatically selecting models are scarce. In this paper, we propose AutoXPCR - a novel method for automated and explainable multi-objective model selection. Our approach leverages meta-learning to estimate any model's performance along PCR criteria, which encompass (P)redictive error, (C)omplexity, and (R)esource demand. Explainability is addressed on multiple levels, as our interactive framework can prioritize less complex models and provide by-product explanations of recommendations. We demonstrate practical feasibility by deploying AutoXPCR on over 1000 configurations across 114 data sets from various domains. Our method clearly outperforms other model selection approaches - on average, it only requires 20% of computation costs for recommending models with 90% of the best-possible quality.
Abstract:Advances in artificial intelligence need to become more resource-aware and sustainable. This requires clear assessment and reporting of energy efficiency trade-offs, like sacrificing fast running time for higher predictive performance. While first methods for investigating efficiency have been proposed, we still lack comprehensive results for popular methods and data sets. In this work, we attempt to fill this information gap by providing empiric insights for popular AI benchmarks, with a total of 100 experiments. Our findings are evidence of how different data sets all have their own efficiency landscape, and show that methods can be more or less likely to act efficiently.
Abstract:Machine learning applications have become ubiquitous. This has led to an increased effort of making machine learning trustworthy. Explainable and fair AI have already matured. They address knowledgeable users and application engineers. For those who do not want to invest time into understanding the method or the learned model, we offer care labels: easy to understand at a glance, allowing for method or model comparisons, and, at the same time, scientifically well-based. On one hand, this transforms descriptions as given by, e.g., Fact Sheets or Model Cards, into a form that is well-suited for end-users. On the other hand, care labels are the result of a certification suite that tests whether stated guarantees hold. In this paper, we present two experiments with our certification suite. One shows the care labels for configurations of Markov random fields (MRFs). Based on the underlying theory of MRFs, each choice leads to its specific rating of static properties like, e.g., expressivity and reliability. In addition, the implementation is tested and resource consumption is measured yielding dynamic properties. This two-level procedure is followed by another experiment certifying deep neural network (DNN) models. There, we draw the static properties from the literature on a particular model and data set. At the second level, experiments are generated that deliver measurements of robustness against certain attacks. We illustrate this by ResNet-18 and MobileNetV3 applied to ImageNet.
Abstract:Machine learning applications have become ubiquitous. Their applications from machine embedded control in production over process optimization in diverse areas (e.g., traffic, finance, sciences) to direct user interactions like advertising and recommendations. This has led to an increased effort of making machine learning trustworthy. Explainable and fair AI have already matured. They address knowledgeable users and application engineers. However, there are users that want to deploy a learned model in a similar way as their washing machine. These stakeholders do not want to spend time understanding the model. Instead, they want to rely on guaranteed properties. What are the relevant properties? How can they be expressed to stakeholders without presupposing machine learning knowledge? How can they be guaranteed for a certain implementation of a model? These questions move far beyond the current state-of-the-art and we want to address them here. We propose a unified framework that certifies learning methods via care labels. They are easy to understand and draw inspiration from well-known certificates like textile labels or property cards of electronic devices. Our framework considers both, the machine learning theory and a given implementation. We test the implementation's compliance with theoretical properties and bounds. In this paper, we illustrate care labels by a prototype implementation of a certification suite for a selection of probabilistic graphical models.
Abstract:This survey presents an overview of integrating prior knowledge into machine learning systems in order to improve explainability. The complexity of machine learning models has elicited research to make them more explainable. However, most explainability methods cannot provide insight beyond the given data, requiring additional information about the context. We propose to harness prior knowledge to improve upon the explanation capabilities of machine learning models. In this paper, we present a categorization of current research into three main categories which either integrate knowledge into the machine learning pipeline, into the explainability method or derive knowledge from explanations. To classify the papers, we build upon the existing taxonomy of informed machine learning and extend it from the perspective of explainability. We conclude with open challenges and research directions.