Abstract:Curriculum learning (CL) aims to increase the performance of a learner on a given task by applying a specialized learning strategy. This strategy focuses on either the dataset, the task, or the model. There is little to no work analysing the possibilities to apply CL on the model capacity in natural language processing. To close this gap, we propose the cup curriculum. In a first phase of training we use a variation of iterative magnitude pruning to reduce model capacity. These weights are reintroduced in a second phase, resulting in the model capacity to show a cup-shaped curve over the training iterations. We empirically evaluate different strategies of the cup curriculum and show that it outperforms early stopping reliably while exhibiting a high resilience to overfitting.
Abstract:The Rashomon Effect describes the following phenomenon: for a given dataset there may exist many models with equally good performance but with different solution strategies. The Rashomon Effect has implications for Explainable Machine Learning, especially for the comparability of explanations. We provide a unified view on three different comparison scenarios and conduct a quantitative evaluation across different datasets, models, attribution methods, and metrics. We find that hyperparameter-tuning plays a role and that metric selection matters. Our results provide empirical support for previously anecdotal evidence and exhibit challenges for both scientists and practitioners.
Abstract:"Leichte Sprache", the German counterpart to Simple English, is a regulated language aiming to facilitate complex written language that would otherwise stay inaccessible to different groups of people. We present a new sentence-aligned monolingual corpus for Simple German -- German. It contains multiple document-aligned sources which we have aligned using automatic sentence-alignment methods. We evaluate our alignments based on a manually labelled subset of aligned documents. The quality of our sentence alignments, as measured by F1-score, surpasses previous work. We publish the dataset under CC BY-SA and the accompanying code under MIT license.
Abstract:This survey presents an overview of integrating prior knowledge into machine learning systems in order to improve explainability. The complexity of machine learning models has elicited research to make them more explainable. However, most explainability methods cannot provide insight beyond the given data, requiring additional information about the context. We propose to harness prior knowledge to improve upon the explanation capabilities of machine learning models. In this paper, we present a categorization of current research into three main categories which either integrate knowledge into the machine learning pipeline, into the explainability method or derive knowledge from explanations. To classify the papers, we build upon the existing taxonomy of informed machine learning and extend it from the perspective of explainability. We conclude with open challenges and research directions.