Abstract:Large language models (LLMs) have demonstrated remarkable capabilities, but their success heavily relies on the quality of pretraining corpora. For Chinese LLMs, the scarcity of high-quality Chinese datasets presents a significant challenge, often limiting their performance. To address this issue, we propose the OpenCSG Chinese Corpus, a series of high-quality datasets specifically designed for LLM pretraining, post-training, and fine-tuning. This corpus includes Fineweb-edu-chinese, Fineweb-edu-chinese-v2, Cosmopedia-chinese, and Smoltalk-chinese, each with distinct characteristics: Fineweb-edu datasets focus on filtered, high-quality content derived from diverse Chinese web sources; Cosmopedia-chinese provides synthetic, textbook-style data for knowledge-intensive training; and Smoltalk-chinese emphasizes stylistic and diverse chat-format data. The OpenCSG Chinese Corpus is characterized by its high-quality text, diverse coverage across domains, and scalable, reproducible data curation processes. Additionally, we conducted extensive experimental analyses, including evaluations on smaller parameter models, which demonstrated significant performance improvements in tasks such as C-Eval, showcasing the effectiveness of the corpus for training Chinese LLMs.
Abstract:Traffic data imputation is a critical preprocessing step in intelligent transportation systems, enabling advanced transportation services. Despite significant advancements in this field, selecting the most suitable model for practical applications remains challenging due to three key issues: 1) incomprehensive consideration of missing patterns that describe how data loss along spatial and temporal dimensions, 2) the lack of test on standardized datasets, and 3) insufficient evaluations. To this end, we first propose practice-oriented taxonomies for missing patterns and imputation models, systematically identifying all possible forms of real-world traffic data loss and analyzing the characteristics of existing models. Furthermore, we introduce a unified benchmarking pipeline to comprehensively evaluate 10 representative models across various missing patterns and rates. This work aims to provide a holistic understanding of traffic data imputation research and serve as a practical guideline.
Abstract:Seismic fault detection holds significant geographical and practical application value, aiding experts in subsurface structure interpretation and resource exploration. Despite some progress made by automated methods based on deep learning, research in the seismic domain faces significant challenges, particularly because it is difficult to obtain high-quality, large-scale, open-source, and diverse datasets, which hinders the development of general foundation models. Therefore, this paper proposes Seismic Fault SAM, which, for the first time, applies the general pre-training foundation model-Segment Anything Model (SAM)-to seismic fault interpretation. This method aligns the universal knowledge learned from a vast amount of images with the seismic domain tasks through an Adapter design. Specifically, our innovative points include designing lightweight Adapter modules, freezing most of the pre-training weights, and only updating a small number of parameters to allow the model to converge quickly and effectively learn fault features; combining 2.5D input strategy to capture 3D spatial patterns with 2D models; integrating geological constraints into the model through prior-based data augmentation techniques to enhance the model's generalization capability. Experimental results on the largest publicly available seismic dataset, Thebe, show that our method surpasses existing 3D models on both OIS and ODS metrics, achieving state-of-the-art performance and providing an effective extension scheme for other seismic domain downstream tasks that lack labeled data.
Abstract:In traditional human living environment landscape design, the establishment of three-dimensional models is an essential step for designers to intuitively present the spatial relationships of design elements, as well as a foundation for conducting landscape analysis on the site. Rapidly and effectively generating beautiful and realistic landscape spaces is a significant challenge faced by designers. Although generative design has been widely applied in related fields, they mostly generate three-dimensional models through the restriction of indicator parameters. However, the elements of landscape design are complex and have unique requirements, making it difficult to generate designs from the perspective of indicator limitations. To address these issues, this study proposes a park space generative design system based on deep learning technology. This system generates design plans based on the topological relationships of landscape elements, then vectorizes the plan element information, and uses Grasshopper to generate three-dimensional models while synchronously fine-tuning parameters, rapidly completing the entire process from basic site conditions to model effect analysis. Experimental results show that: (1) the system, with the aid of AI-assisted technology, can rapidly generate space green space schemes that meet the designer's perspective based on site conditions; (2) this study has vectorized and three-dimensionalized various types of landscape design elements based on semantic information; (3) the analysis and visualization module constructed in this study can perform landscape analysis on the generated three-dimensional models and produce node effect diagrams, allowing users to modify the design in real time based on the effects, thus enhancing the system's interactivity.
Abstract:This study aims to explore the complex relationship between perceptual and cognitive interactions in multimodal data analysis,with a specific emphasis on spatial experience design in overseas Chinese gardens. It is found that evaluation content and images on social media can reflect individuals' concerns and sentiment responses, providing a rich data base for cognitive research that contains both sentimental and image-based cognitive information. Leveraging deep learning techniques, we analyze textual and visual data from social media, thereby unveiling the relationship between people's perceptions and sentiment cognition within the context of overseas Chinese gardens. In addition, our study introduces a multi-agent system (MAS)alongside AI agents. Each agent explores the laws of aesthetic cognition through chat scene simulation combined with web search. This study goes beyond the traditional approach of translating perceptions into sentiment scores, allowing for an extension of the research methodology in terms of directly analyzing texts and digging deeper into opinion data. This study provides new perspectives for understanding aesthetic experience and its impact on architecture and landscape design across diverse cultural contexts, which is an essential contribution to the field of cultural communication and aesthetic understanding.
Abstract:The development of generative design driven by artificial intelligence algorithms is speedy. There are two research gaps in the current research: 1) Most studies only focus on the relationship between design elements and pay little attention to the external information of the site; 2) GAN and other traditional generative algorithms generate results with low resolution and insufficient details. To address these two problems, we integrate GAN, Stable diffusion multimodal large-scale image pre-training model to construct a full-process park generative design method: 1) First, construct a high-precision remote sensing object extraction system for automated extraction of urban environmental information; 2) Secondly, use GAN to construct a park design generation system based on the external environment, which can quickly infer and generate design schemes from urban environmental information; 3) Finally, introduce Stable Diffusion to optimize the design plan, fill in details, and expand the resolution of the plan by 64 times. This method can achieve a fully unmanned design automation workflow. The research results show that: 1) The relationship between the inside and outside of the site will affect the algorithm generation results. 2) Compared with traditional GAN algorithms, Stable diffusion significantly improve the information richness of the generated results.
Abstract:This paper introduces an approach to enhance seismic fault recognition through self-supervised pretraining. Seismic fault interpretation holds great significance in the fields of geophysics and geology. However, conventional methods for seismic fault recognition encounter various issues, including dependence on data quality and quantity, as well as susceptibility to interpreter subjectivity. Currently, automated fault recognition methods proposed based on small synthetic datasets experience performance degradation when applied to actual seismic data. To address these challenges, we have introduced the concept of self-supervised learning, utilizing a substantial amount of relatively easily obtainable unlabeled seismic data for pretraining. Specifically, we have employed the Swin Transformer model as the core network and employed the SimMIM pretraining task to capture unique features related to discontinuities in seismic data. During the fine-tuning phase, inspired by edge detection techniques, we have also refined the structure of the Swin-UNETR model, enabling multiscale decoding and fusion for more effective fault detection. Experimental results demonstrate that our proposed method attains state-of-the-art performance on the Thebe dataset, as measured by the OIS and ODS metrics.
Abstract:Key challenges in running a retail business include how to select products to present to consumers (the assortment problem), and how to price products (the pricing problem) to maximize revenue or profit. Instead of considering these problems in isolation, we propose a joint approach to assortment-pricing based on contextual bandits. Our model is doubly high-dimensional, in that both context vectors and actions are allowed to take values in high-dimensional spaces. In order to circumvent the curse of dimensionality, we propose a simple yet flexible model that captures the interactions between covariates and actions via a (near) low-rank representation matrix. The resulting class of models is reasonably expressive while remaining interpretable through latent factors, and includes various structured linear bandit and pricing models as particular cases. We propose a computationally tractable procedure that combines an exploration/exploitation protocol with an efficient low-rank matrix estimator, and we prove bounds on its regret. Simulation results show that this method has lower regret than state-of-the-art methods applied to various standard bandit and pricing models. Real-world case studies on the assortment-pricing problem, from an industry-leading instant noodles company to an emerging beauty start-up, underscore the gains achievable using our method. In each case, we show at least three-fold gains in revenue or profit by our bandit method, as well as the interpretability of the latent factor models that are learned.
Abstract:We propose a novel framework for RGB-based category-level 6D object pose and size estimation. Our approach relies on the prediction of normalized object coordinate space (NOCS), which serves as an efficient and effective object canonical representation that can be extracted from RGB images. Unlike previous approaches that heavily relied on additional depth readings as input, our novelty lies in leveraging multi-view information, which is commonly available in practical scenarios where a moving camera continuously observes the environment. By introducing multi-view constraints, we can obtain accurate camera pose and depth estimation from a monocular dense SLAM framework. Additionally, by incorporating constraints on the camera relative pose, we can apply trimming strategies and robust pose averaging on the multi-view object poses, resulting in more accurate and robust estimations of category-level object poses even in the absence of direct depth readings. Furthermore, we introduce a novel NOCS prediction network that significantly improves performance. Our experimental results demonstrate the strong performance of our proposed method, even comparable to state-of-the-art RGB-D methods across public dataset sequences. Additionally, we showcase the generalization ability of our method by evaluating it on self-collected datasets.
Abstract:Reasoning-based approaches have demonstrated their powerful ability for the task of image-text matching. In this work, two issues are addressed for image-text matching. First, for reasoning processing, conventional approaches have no ability to find and use multi-level hierarchical similarity information. To solve this problem, a hierarchical similarity reasoning module is proposed to automatically extract context information, which is then co-exploited with local interaction information for efficient reasoning. Second, previous approaches only consider learning single-stream similarity alignment (i.e., image-to-text level or text-to-image level), which is inadequate to fully use similarity information for image-text matching. To address this issue, a two-stream architecture is developed to decompose image-text matching into image-to-text level and text-to-image level similarity computation. These two issues are investigated by a unifying framework that is trained in an end-to-end manner, namely two-stream hierarchical similarity reasoning network. The extensive experiments performed on the two benchmark datasets of MSCOCO and Flickr30K show the superiority of the proposed approach as compared to existing state-of-the-art methods.