Abstract:We present a novel and flexible learning-based method for generating tileable image sets. Our method goes beyond simple self-tiling, supporting sets of mutually tileable images that exhibit a high degree of diversity. To promote diversity we decouple structure from content by foregoing explicit copying of patches from an exemplar image. Instead we leverage the prior knowledge of natural images and textures embedded in large-scale pretrained diffusion models to guide tile generation constrained by exterior boundary conditions and a text prompt to specify the content. By carefully designing and selecting the exterior boundary conditions, we can reformulate the tile generation process as an inpainting problem, allowing us to directly employ existing diffusion-based inpainting models without the need to retrain a model on a custom training set. We demonstrate the flexibility and efficacy of our content-aware tile generation method on different tiling schemes, such as Wang tiles, from only a text prompt. Furthermore, we introduce a novel Dual Wang tiling scheme that provides greater texture continuity and diversity than existing Wang tile variants.
Abstract:This paper presents a novel method for exerting fine-grained lighting control during text-driven diffusion-based image generation. While existing diffusion models already have the ability to generate images under any lighting condition, without additional guidance these models tend to correlate image content and lighting. Moreover, text prompts lack the necessary expressional power to describe detailed lighting setups. To provide the content creator with fine-grained control over the lighting during image generation, we augment the text-prompt with detailed lighting information in the form of radiance hints, i.e., visualizations of the scene geometry with a homogeneous canonical material under the target lighting. However, the scene geometry needed to produce the radiance hints is unknown. Our key observation is that we only need to guide the diffusion process, hence exact radiance hints are not necessary; we only need to point the diffusion model in the right direction. Based on this observation, we introduce a three stage method for controlling the lighting during image generation. In the first stage, we leverage a standard pretrained diffusion model to generate a provisional image under uncontrolled lighting. Next, in the second stage, we resynthesize and refine the foreground object in the generated image by passing the target lighting to a refined diffusion model, named DiLightNet, using radiance hints computed on a coarse shape of the foreground object inferred from the provisional image. To retain the texture details, we multiply the radiance hints with a neural encoding of the provisional synthesized image before passing it to DiLightNet. Finally, in the third stage, we resynthesize the background to be consistent with the lighting on the foreground object. We demonstrate and validate our lighting controlled diffusion model on a variety of text prompts and lighting conditions.
Abstract:We introduce a wearable single-eye emotion recognition device and a real-time approach to recognizing emotions from partial observations of an emotion that is robust to changes in lighting conditions. At the heart of our method is a bio-inspired event-based camera setup and a newly designed lightweight Spiking Eye Emotion Network (SEEN). Compared to conventional cameras, event-based cameras offer a higher dynamic range (up to 140 dB vs. 80 dB) and a higher temporal resolution. Thus, the captured events can encode rich temporal cues under challenging lighting conditions. However, these events lack texture information, posing problems in decoding temporal information effectively. SEEN tackles this issue from two different perspectives. First, we adopt convolutional spiking layers to take advantage of the spiking neural network's ability to decode pertinent temporal information. Second, SEEN learns to extract essential spatial cues from corresponding intensity frames and leverages a novel weight-copy scheme to convey spatial attention to the convolutional spiking layers during training and inference. We extensively validate and demonstrate the effectiveness of our approach on a specially collected Single-eye Event-based Emotion (SEE) dataset. To the best of our knowledge, our method is the first eye-based emotion recognition method that leverages event-based cameras and spiking neural network.
Abstract:This paper presents a novel neural implicit radiance representation for free viewpoint relighting from a small set of unstructured photographs of an object lit by a moving point light source different from the view position. We express the shape as a signed distance function modeled by a multi layer perceptron. In contrast to prior relightable implicit neural representations, we do not disentangle the different reflectance components, but model both the local and global reflectance at each point by a second multi layer perceptron that, in addition, to density features, the current position, the normal (from the signed distace function), view direction, and light position, also takes shadow and highlight hints to aid the network in modeling the corresponding high frequency light transport effects. These hints are provided as a suggestion, and we leave it up to the network to decide how to incorporate these in the final relit result. We demonstrate and validate our neural implicit representation on synthetic and real scenes exhibiting a wide variety of shapes, material properties, and global illumination light transport.
Abstract:We present a new weakly supervised learning-based method for generating novel category-specific 3D shapes from unoccluded image collections. Our method is weakly supervised and only requires silhouette annotations from unoccluded, category-specific objects. Our method does not require access to the object's 3D shape, multiple observations per object from different views, intra-image pixel-correspondences, or any view annotations. Key to our method is a novel multi-projection generative adversarial network (MP-GAN) that trains a 3D shape generator to be consistent with multiple 2D projections of the 3D shapes, and without direct access to these 3D shapes. This is achieved through multiple discriminators that encode the distribution of 2D projections of the 3D shapes seen from a different views. Additionally, to determine the view information for each silhouette image, we also train a view prediction network on visualizations of 3D shapes synthesized by the generator. We iteratively alternate between training the generator and training the view prediction network. We validate our multi-projection GAN on both synthetic and real image datasets. Furthermore, we also show that multi-projection GANs can aid in learning other high-dimensional distributions from lower dimensional training datasets, such as material-class specific spatially varying reflectance properties from images.