Abstract:Large language models (LLMs), trained on diverse data effectively acquire a breadth of information across various domains. However, their computational complexity, cost, and lack of transparency hinder their direct application for specialised tasks. In fields such as clinical research, acquiring expert annotations or prior knowledge about predictive models is often costly and time-consuming. This study proposes using LLMs to elicit expert prior distributions for predictive models. This approach also provides an alternative to in-context learning, where language models are tasked with making predictions directly. We compare LLM-elicited and uninformative priors, evaluate whether LLMs truthfully generate parameter distributions, and propose a model selection strategy for in-context learning and prior elicitation. Our findings show that LLM-elicited prior parameter distributions significantly reduce predictive error compared to uninformative priors in low-data settings. Applied to clinical problems, this translates to fewer required biological samples, lowering cost and resources. Prior elicitation also consistently outperforms and proves more reliable than in-context learning at a lower cost, making it a preferred alternative in our setting. We demonstrate the utility of this method across various use cases, including clinical applications. For infection prediction, using LLM-elicited priors reduced the number of required labels to achieve the same accuracy as an uninformative prior by 55%, at 200 days earlier in the study.
Abstract:In Explainable AI, rule extraction translates model knowledge into logical rules, such as IF-THEN statements, crucial for understanding patterns learned by black-box models. This could significantly aid in fields like disease diagnosis, disease progression estimation, or drug discovery. However, such application domains often contain imbalanced data, with the class of interest underrepresented. Existing methods inevitably compromise the performance of rules for the minor class to maximise the overall performance. As the first attempt in this field, we propose a model-agnostic approach for extracting rules from specific subgroups of data, featuring automatic rule generation for numerical features. This method enhances the regional explainability of machine learning models and offers wider applicability compared to existing methods. We additionally introduce a new method for selecting features to compose rules, reducing computational costs in high-dimensional spaces. Experiments across various datasets and models demonstrate the effectiveness of our methods.
Abstract:Time-series representation learning is a key area of research for remote healthcare monitoring applications. In this work, we focus on a dataset of recordings of in-home activity from people living with Dementia. We design a representation learning method based on converting activity to text strings that can be encoded using a language model fine-tuned to transform data from the same participants within a $30$-day window to similar embeddings in the vector space. This allows for clustering and vector searching over participants and days, and the identification of activity deviations to aid with personalised delivery of care.
Abstract:We propose MicroT, a low-energy, multi-task adaptive model framework for resource-constrained MCUs. We divide the original model into a feature extractor and a classifier. The feature extractor is obtained through self-supervised knowledge distillation and further optimized into part and full models through model splitting and joint training. These models are then deployed on MCUs, with classifiers added and trained on local tasks, ultimately performing stage-decision for joint inference. In this process, the part model initially processes the sample, and if the confidence score falls below the set threshold, the full model will resume and continue the inference. We evaluate MicroT on two models, three datasets, and two MCU boards. Our experimental evaluation shows that MicroT effectively improves model performance and reduces energy consumption when dealing with multiple local tasks. Compared to the unoptimized feature extractor, MicroT can improve accuracy by up to 9.87%. On MCUs, compared to the standard full model inference, MicroT can save up to about 29.13% in energy consumption. MicroT also allows users to adaptively adjust the stage-decision ratio as needed, better balancing model performance and energy consumption. Under the standard stage-decision ratio configuration, MicroT can increase accuracy by 5.91% and save about 14.47% of energy consumption.
Abstract:Machine learning enables extracting clinical insights from large temporal datasets. The applications of such machine learning models include identifying disease patterns and predicting patient outcomes. However, limited interpretability poses challenges for deploying advanced machine learning in digital healthcare. Understanding the meaning of latent states is crucial for interpreting machine learning models, assuming they capture underlying patterns. In this paper, we present a concise algorithm that allows for i) interpreting latent states using highly related input features; ii) interpreting predictions using subsets of input features via latent states; and iii) interpreting changes in latent states over time. The proposed algorithm is feasible for any model that is differentiable. We demonstrate that this approach enables the identification of a daytime behavioral pattern for predicting nocturnal behavior in a real-world healthcare dataset.
Abstract:Malnutrition and dehydration are strongly associated with increased cognitive and functional decline in people living with dementia (PLWD), as well as an increased rate of hospitalisations in comparison to their healthy counterparts. Extreme changes in eating and drinking behaviours can often lead to malnutrition and dehydration, accelerating the progression of cognitive and functional decline and resulting in a marked reduction in quality of life. Unfortunately, there are currently no established methods by which to objectively detect such changes. Here, we present the findings of an extensive quantitative analysis conducted on in-home monitoring data collected from 73 households of PLWD using Internet of Things technologies. The Coronavirus 2019 (COVID-19) pandemic has previously been shown to have dramatically altered the behavioural habits, particularly the eating and drinking habits, of PLWD. Using the COVID-19 pandemic as a natural experiment, we conducted linear mixed-effects modelling to examine changes in mean kitchen activity within a subset of 21 households of PLWD that were continuously monitored for 499 days. We report an observable increase in day-time kitchen activity and a significant decrease in night-time kitchen activity (t(147) = -2.90, p < 0.001). We further propose a novel analytical approach to detecting changes in behaviours of PLWD using Markov modelling applied to remote monitoring data as a proxy for behaviours that cannot be directly measured. Together, these results pave the way to introduce improvements into the monitoring of PLWD in naturalistic settings and for shifting from reactive to proactive care.
Abstract:Current methods for pattern analysis in time series mainly rely on statistical features or probabilistic learning and inference methods to identify patterns and trends in the data. Such methods do not generalize well when applied to multivariate, multi-source, state-varying, and noisy time-series data. To address these issues, we propose a highly generalizable method that uses information theory-based features to identify and learn from patterns in multivariate time-series data. To demonstrate the proposed approach, we analyze pattern changes in human activity data. For applications with stochastic state transitions, features are developed based on Shannon's entropy of Markov chains, entropy rates of Markov chains, entropy production of Markov chains, and von Neumann entropy of Markov chains. For applications where state modeling is not applicable, we utilize five entropy variants, including approximate entropy, increment entropy, dispersion entropy, phase entropy, and slope entropy. The results show the proposed information theory-based features improve the recall rate, F1 score, and accuracy on average by up to 23.01\% compared with the baseline models and a simpler model structure, with an average reduction of 18.75 times in the number of model parameters.
Abstract:When data is streaming from multiple sources, conventional training methods update model weights often assuming the same level of reliability for each source; that is: a model does not consider data quality of each source during training. In many applications, sources can have varied levels of noise or corruption that has negative effects on the learning of a robust deep learning model. A key issue is that the quality of data or labels for individual sources is often not available during training and could vary over time. Our solution to this problem is to consider the mistakes made while training on data originating from sources and utilise this to create a perceived data quality for each source. This paper demonstrates a straight-forward and novel technique that can be applied to any gradient descent optimiser: Update model weights as a function of the perceived reliability of data sources within a wider data set. The algorithm controls the plasticity of a given model to weight updates based on the history of losses from individual data sources. We show that applying this technique can significantly improve model performance when trained on a mixture of reliable and unreliable data sources, and maintain performance when models are trained on data sources that are all considered reliable. All code to reproduce this work's experiments and implement the algorithm in the reader's own models is made available.
Abstract:In this work, we apply information theory inspired methods to quantify changes in daily activity patterns. We use in-home movement monitoring data and show how they can help indicate the occurrence of healthcare-related events. Three different types of entropy measures namely Shannon's entropy, entropy rates for Markov chains, and entropy production rate have been utilised. The measures are evaluated on a large-scale in-home monitoring dataset that has been collected within our dementia care clinical study. The study uses Internet of Things (IoT) enabled solutions for continuous monitoring of in-home activity, sleep, and physiology to develop care and early intervention solutions to support people living with dementia (PLWD) in their own homes. Our main goal is to show the applicability of the entropy measures to time-series activity data analysis and to use the extracted measures as new engineered features that can be fed into inference and analysis models. The results of our experiments show that in most cases the combination of these measures can indicate the occurrence of healthcare-related events. We also find that different participants with the same events may have different measures based on one entropy measure. So using a combination of these measures in an inference model will be more effective than any of the single measures.
Abstract:Agitation is one of the neuropsychiatric symptoms with high prevalence in dementia which can negatively impact the Activities of Daily Living (ADL) and the independence of individuals. Detecting agitation episodes can assist in providing People Living with Dementia (PLWD) with early and timely interventions. Analysing agitation episodes will also help identify modifiable factors such as ambient temperature and sleep as possible components causing agitation in an individual. This preliminary study presents a supervised learning model to analyse the risk of agitation in PLWD using in-home monitoring data. The in-home monitoring data includes motion sensors, physiological measurements, and the use of kitchen appliances from 46 homes of PLWD between April 2019-June 2021. We apply a recurrent deep learning model to identify agitation episodes validated and recorded by a clinical monitoring team. We present the experiments to assess the efficacy of the proposed model. The proposed model achieves an average of 79.78% recall, 27.66% precision and 37.64% F1 scores when employing the optimal parameters, suggesting a good ability to recognise agitation events. We also discuss using machine learning models for analysing the behavioural patterns using continuous monitoring data and explore clinical applicability and the choices between sensitivity and specificity in-home monitoring applications.