Large language models (LLMs), trained on diverse data effectively acquire a breadth of information across various domains. However, their computational complexity, cost, and lack of transparency hinder their direct application for specialised tasks. In fields such as clinical research, acquiring expert annotations or prior knowledge about predictive models is often costly and time-consuming. This study proposes using LLMs to elicit expert prior distributions for predictive models. This approach also provides an alternative to in-context learning, where language models are tasked with making predictions directly. We compare LLM-elicited and uninformative priors, evaluate whether LLMs truthfully generate parameter distributions, and propose a model selection strategy for in-context learning and prior elicitation. Our findings show that LLM-elicited prior parameter distributions significantly reduce predictive error compared to uninformative priors in low-data settings. Applied to clinical problems, this translates to fewer required biological samples, lowering cost and resources. Prior elicitation also consistently outperforms and proves more reliable than in-context learning at a lower cost, making it a preferred alternative in our setting. We demonstrate the utility of this method across various use cases, including clinical applications. For infection prediction, using LLM-elicited priors reduced the number of required labels to achieve the same accuracy as an uninformative prior by 55%, at 200 days earlier in the study.