Abstract:Over the recent years, the protection of the so-called `soft-targets', i.e. locations easily accessible by the general public with relatively low, though, security measures, has emerged as a rather challenging and increasingly important issue. The complexity and seriousness of this security threat growths nowadays exponentially, due to the emergence of new advanced technologies (e.g. Artificial Intelligence (AI), Autonomous Vehicles (AVs), 3D printing, etc.); especially when it comes to large-scale, popular and diverse public spaces. In this paper, a novel Digital Twin-as-a-Security-Service (DTaaSS) architecture is introduced for holistically and significantly enhancing the protection of public spaces (e.g. metro stations, leisure sites, urban squares, etc.). The proposed framework combines a Digital Twin (DT) conceptualization with additional cutting-edge technologies, including Internet of Things (IoT), cloud computing, Big Data analytics and AI. In particular, DTaaSS comprises a holistic, real-time, large-scale, comprehensive and data-driven security solution for the efficient/robust protection of public spaces, supporting: a) data collection and analytics, b) area monitoring/control and proactive threat detection, c) incident/attack prediction, and d) quantitative and data-driven vulnerability assessment. Overall, the designed architecture exhibits increased potential in handling complex, hybrid and combined threats over large, critical and popular soft-targets. The applicability and robustness of DTaaSS is discussed in detail against representative and diverse real-world application scenarios, including complex attacks to: a) a metro station, b) a leisure site, and c) a cathedral square.
Abstract:Image data augmentation constitutes a critical methodology in modern computer vision tasks, since it can facilitate towards enhancing the diversity and quality of training datasets; thereby, improving the performance and robustness of machine learning models in downstream tasks. In parallel, augmentation approaches can also be used for editing/modifying a given image in a context- and semantics-aware way. Diffusion Models (DMs), which comprise one of the most recent and highly promising classes of methods in the field of generative Artificial Intelligence (AI), have emerged as a powerful tool for image data augmentation, capable of generating realistic and diverse images by learning the underlying data distribution. The current study realizes a systematic, comprehensive and in-depth review of DM-based approaches for image augmentation, covering a wide range of strategies, tasks and applications. In particular, a comprehensive analysis of the fundamental principles, model architectures and training strategies of DMs is initially performed. Subsequently, a taxonomy of the relevant image augmentation methods is introduced, focusing on techniques regarding semantic manipulation, personalization and adaptation, and application-specific augmentation tasks. Then, performance assessment methodologies and respective evaluation metrics are analyzed. Finally, current challenges and future research directions in the field are discussed.
Abstract:Federated learning (FL) is a decentralized learning technique that enables participating devices to collaboratively build a shared Machine Leaning (ML) or Deep Learning (DL) model without revealing their raw data to a third party. Due to its privacy-preserving nature, FL has sparked widespread attention for building Intrusion Detection Systems (IDS) within the realm of cybersecurity. However, the data heterogeneity across participating domains and entities presents significant challenges for the reliable implementation of an FL-based IDS. In this paper, we propose an effective method called Statistical Averaging (StatAvg) to alleviate non-independently and identically (non-iid) distributed features across local clients' data in FL. In particular, StatAvg allows the FL clients to share their individual data statistics with the server, which then aggregates this information to produce global statistics. The latter are shared with the clients and used for universal data normalisation. It is worth mentioning that StatAvg can seamlessly integrate with any FL aggregation strategy, as it occurs before the actual FL training process. The proposed method is evaluated against baseline approaches using datasets for network and host Artificial Intelligence (AI)-powered IDS. The experimental results demonstrate the efficiency of StatAvg in mitigating non-iid feature distributions across the FL clients compared to the baseline methods.
Abstract:In the ever-evolving era of Artificial Intelligence (AI), model performance has constituted a key metric driving innovation, leading to an exponential growth in model size and complexity. However, sustainability and energy efficiency have been critical requirements during deployment in contemporary industrial settings, necessitating the use of data-efficient approaches such as few-shot learning. In this paper, to alleviate the burden of lengthy model training and minimize energy consumption, a finetuning approach to adapt standard object detection models to downstream tasks is examined. Subsequently, a thorough case study and evaluation of the energy demands of the developed models, applied in object detection benchmark datasets from volatile industrial environments is presented. Specifically, different finetuning strategies as well as utilization of ancillary evaluation data during training are examined, and the trade-off between performance and efficiency is highlighted in this low-data regime. Finally, this paper introduces a novel way to quantify this trade-off through a customized Efficiency Factor metric.
Abstract:The current study focuses on systematically analyzing the recent advances in the field of Multimodal eXplainable Artificial Intelligence (MXAI). In particular, the relevant primary prediction tasks and publicly available datasets are initially described. Subsequently, a structured presentation of the MXAI methods of the literature is provided, taking into account the following criteria: a) The number of the involved modalities, b) The stage at which explanations are produced, and c) The type of the adopted methodology (i.e. mathematical formalism). Then, the metrics used for MXAI evaluation are discussed. Finally, a comprehensive analysis of current challenges and future research directions is provided.