SynSense AG, Swizerland, Bio-Inspired Circuits and Systems, Groningen Cognitive Systems and Materials Center
Abstract:Recent advances in memory technologies, devices and materials have shown great potential for integration into neuromorphic electronic systems. However, a significant gap remains between the development of these materials and the realization of large-scale, fully functional systems. One key challenge is determining which devices and materials are best suited for specific functions and how they can be paired with CMOS circuitry. To address this, we introduce TEXEL, a mixed-signal neuromorphic architecture designed to explore the integration of on-chip learning circuits and novel two- and three-terminal devices. TEXEL serves as an accessible platform to bridge the gap between CMOS-based neuromorphic computation and the latest advancements in emerging devices. In this paper, we demonstrate the readiness of TEXEL for device integration through comprehensive chip measurements and simulations. TEXEL provides a practical system for testing bio-inspired learning algorithms alongside emerging devices, establishing a tangible link between brain-inspired computation and cutting-edge device research.
Abstract:With the remarkable progress that technology has made, the need for processing data near the sensors at the edge has increased dramatically. The electronic systems used in these applications must process data continuously, in real-time, and extract relevant information using the smallest possible energy budgets. A promising approach for implementing always-on processing of sensory signals that supports on-demand, sparse, and edge-computing is to take inspiration from biological nervous system. Following this approach, we present a brain-inspired platform for prototyping real-time event-based Spiking Neural Networks (SNNs). The system proposed supports the direct emulation of dynamic and realistic neural processing phenomena such as short-term plasticity, NMDA gating, AMPA diffusion, homeostasis, spike frequency adaptation, conductance-based dendritic compartments and spike transmission delays. The analog circuits that implement such primitives are paired with a low latency asynchronous digital circuits for routing and mapping events. This asynchronous infrastructure enables the definition of different network architectures, and provides direct event-based interfaces to convert and encode data from event-based and continuous-signal sensors. Here we describe the overall system architecture, we characterize the mixed signal analog-digital circuits that emulate neural dynamics, demonstrate their features with experimental measurements, and present a low- and high-level software ecosystem that can be used for configuring the system. The flexibility to emulate different biologically plausible neural networks, and the chip's ability to monitor both population and single neuron signals in real-time, allow to develop and validate complex models of neural processing for both basic research and edge-computing applications.
Abstract:Edge computing solutions that enable the extraction of high level information from a variety of sensors is in increasingly high demand. This is due to the increasing number of smart devices that require sensory processing for their application on the edge. To tackle this problem, we present a smart vision sensor System on Chip (Soc), featuring an event-based camera and a low power asynchronous spiking Convolutional Neuronal Network (sCNN) computing architecture embedded on a single chip. By combining both sensor and processing on a single die, we can lower unit production costs significantly. Moreover, the simple end-to-end nature of the SoC facilitates small stand-alone applications as well as functioning as an edge node in a larger systems. The event-driven nature of the vision sensor delivers high-speed signals in a sparse data stream. This is reflected in the processing pipeline, focuses on optimising highly sparse computation and minimising latency for 9 sCNN layers to $3.36\mu s$. Overall, this results in an extremely low-latency visual processing pipeline deployed on a small form factor with a low energy budget and sensor cost. We present the asynchronous architecture, the individual blocks, the sCNN processing principle and benchmark against other sCNN capable processors.