SynSense, PR China
Abstract:Analyzing electroencephalogram (EEG) signals to detect the epileptic seizure status of a subject presents a challenge to existing technologies aimed at providing timely and efficient diagnosis. In this study, we aimed to detect interictal and ictal periods of epileptic seizures using a spiking neural network (SNN). Our proposed approach provides an online and real-time preliminary diagnosis of epileptic seizures and helps to detect possible pathological conditions.To validate our approach, we conducted experiments using multiple datasets. We utilized a trained SNN to identify the presence of epileptic seizures and compared our results with those of related studies. The SNN model was deployed on Xylo, a digital SNN neuromorphic processor designed to process temporal signals. Xylo efficiently simulates spiking leaky integrate-and-fire neurons with exponential input synapses. Xylo has much lower energy requirments than traditional approaches to signal processing, making it an ideal platform for developing low-power seizure detection systems.Our proposed method has a high test accuracy of 93.3% and 92.9% when classifying ictal and interictal periods. At the same time, the application has an average power consumption of 87.4 uW(IO power) + 287.9 uW(computational power) when deployed to Xylo. Our method demonstrates excellent low-latency performance when tested on multiple datasets. Our work provides a new solution for seizure detection, and it is expected to be widely used in portable and wearable devices in the future.
Abstract:Keypoint detection and tracking in traditional image frames are often compromised by image quality issues such as motion blur and extreme lighting conditions. Event cameras offer potential solutions to these challenges by virtue of their high temporal resolution and high dynamic range. However, they have limited performance in practical applications due to their inherent noise in event data. This paper advocates fusing the complementary information from image frames and event streams to achieve more robust keypoint detection and tracking. Specifically, we propose a novel keypoint detection network that fuses the textural and structural information from image frames with the high-temporal-resolution motion information from event streams, namely FE-DeTr. The network leverages a temporal response consistency for supervision, ensuring stable and efficient keypoint detection. Moreover, we use a spatio-temporal nearest-neighbor search strategy for robust keypoint tracking. Extensive experiments are conducted on a new dataset featuring both image frames and event data captured under extreme conditions. The experimental results confirm the superior performance of our method over both existing frame-based and event-based methods.
Abstract:Edge computing solutions that enable the extraction of high level information from a variety of sensors is in increasingly high demand. This is due to the increasing number of smart devices that require sensory processing for their application on the edge. To tackle this problem, we present a smart vision sensor System on Chip (Soc), featuring an event-based camera and a low power asynchronous spiking Convolutional Neuronal Network (sCNN) computing architecture embedded on a single chip. By combining both sensor and processing on a single die, we can lower unit production costs significantly. Moreover, the simple end-to-end nature of the SoC facilitates small stand-alone applications as well as functioning as an edge node in a larger systems. The event-driven nature of the vision sensor delivers high-speed signals in a sparse data stream. This is reflected in the processing pipeline, focuses on optimising highly sparse computation and minimising latency for 9 sCNN layers to $3.36\mu s$. Overall, this results in an extremely low-latency visual processing pipeline deployed on a small form factor with a low energy budget and sensor cost. We present the asynchronous architecture, the individual blocks, the sCNN processing principle and benchmark against other sCNN capable processors.