Abstract:XyloAudio is a line of ultra-low-power audio inference chips, designed for in- and near-microphone analysis of audio in real-time energy-constrained scenarios. Xylo is designed around a highly efficient integer-logic processor which simulates parameter- and activity-sparse spiking neural networks (SNNs) using a leaky integrate-and-fire (LIF) neuron model. Neurons on Xylo are quantised integer devices operating in synchronous digital CMOS, with neuron and synapse state quantised to 16 bit, and weight parameters quantised to 8 bit. Xylo is tailored for real-time streaming operation, as opposed to accelerated-time operation in the case of an inference accelerator. XyloAudio includes a low-power audio encoding interface for direct connection to a microphone, designed for sparse encoding of incident audio for further processing by the inference core. In this report we present the results of DCASE 2020 acoustic scene classification audio benchmark dataset deployed to XyloAudio 2. We describe the benchmark dataset; the audio preprocessing approach; and the network architecture and training approach. We present the performance of the trained model, and the results of power and latency measurements performed on the XyloAudio 2 development kit. This benchmark is conducted as part of the Neurobench project.
Abstract:Analyzing electroencephalogram (EEG) signals to detect the epileptic seizure status of a subject presents a challenge to existing technologies aimed at providing timely and efficient diagnosis. In this study, we aimed to detect interictal and ictal periods of epileptic seizures using a spiking neural network (SNN). Our proposed approach provides an online and real-time preliminary diagnosis of epileptic seizures and helps to detect possible pathological conditions.To validate our approach, we conducted experiments using multiple datasets. We utilized a trained SNN to identify the presence of epileptic seizures and compared our results with those of related studies. The SNN model was deployed on Xylo, a digital SNN neuromorphic processor designed to process temporal signals. Xylo efficiently simulates spiking leaky integrate-and-fire neurons with exponential input synapses. Xylo has much lower energy requirments than traditional approaches to signal processing, making it an ideal platform for developing low-power seizure detection systems.Our proposed method has a high test accuracy of 93.3% and 92.9% when classifying ictal and interictal periods. At the same time, the application has an average power consumption of 87.4 uW(IO power) + 287.9 uW(computational power) when deployed to Xylo. Our method demonstrates excellent low-latency performance when tested on multiple datasets. Our work provides a new solution for seizure detection, and it is expected to be widely used in portable and wearable devices in the future.