Abstract:This work proposes a novel method for object co-segmentation, i.e. pixel-level localization of a common object in a set of images, that uses no pixel-level supervision for training. Two pre-trained Vision Transformer (ViT) models are exploited: ImageNet classification-trained ViT, whose features are used to estimate rough object localization through intra-class token relevance, and a self-supervised DINO-ViT for intra-image token relevance. On recent challenging benchmarks, the method achieves state-of-the-art performance among methods trained with the same level of supervision (image labels) while being competitive with methods trained with pixel-level supervision (binary masks). The benefits of the proposed co-segmentation method are further demonstrated in the task of large-scale sketch recognition, that is, the classification of sketches into a wide range of categories. The limited amount of hand-drawn sketch training data is leveraged by exploiting readily available image-level-annotated datasets of natural images containing a large number of classes. To bridge the domain gap, the classifier is trained on a sketch-like proxy domain derived from edges detected on natural images. We show that sketch recognition significantly benefits when the classifier is trained on sketch-like structures extracted from the co-segmented area rather than from the full image. Code: https://github.com/nikosips/CBNC .
Abstract:Universal image representations are critical in enabling real-world fine-grained and instance-level recognition applications, where objects and entities from any domain must be identified at large scale. Despite recent advances, existing methods fail to capture important domain-specific knowledge, while also ignoring differences in data distribution across different domains. This leads to a large performance gap between efficient universal solutions and expensive approaches utilising a collection of specialist models, one for each domain. In this work, we make significant strides towards closing this gap, by introducing a new learning technique, dubbed UDON (Universal Dynamic Online DistillatioN). UDON employs multi-teacher distillation, where each teacher is specialized in one domain, to transfer detailed domain-specific knowledge into the student universal embedding. UDON's distillation approach is not only effective, but also very efficient, by sharing most model parameters between the student and all teachers, where all models are jointly trained in an online manner. UDON also comprises a sampling technique which adapts the training process to dynamically allocate batches to domains which are learned slower and require more frequent processing. This boosts significantly the learning of complex domains which are characterised by a large number of classes and long-tail distributions. With comprehensive experiments, we validate each component of UDON, and showcase significant improvements over the state of the art in the recent UnED benchmark. Code: https://github.com/nikosips/UDON .
Abstract:Fine-grained and instance-level recognition methods are commonly trained and evaluated on specific domains, in a model per domain scenario. Such an approach, however, is impractical in real large-scale applications. In this work, we address the problem of universal image embedding, where a single universal model is trained and used in multiple domains. First, we leverage existing domain-specific datasets to carefully construct a new large-scale public benchmark for the evaluation of universal image embeddings, with 241k query images, 1.4M index images and 2.8M training images across 8 different domains and 349k classes. We define suitable metrics, training and evaluation protocols to foster future research in this area. Second, we provide a comprehensive experimental evaluation on the new dataset, demonstrating that existing approaches and simplistic extensions lead to worse performance than an assembly of models trained for each domain separately. Finally, we conducted a public research competition on this topic, leveraging industrial datasets, which attracted the participation of more than 1k teams worldwide. This exercise generated many interesting research ideas and findings which we present in detail. Project webpage: https://cmp.felk.cvut.cz/univ_emb/
Abstract:This work introduces a dataset for large-scale instance-level recognition in the domain of artworks. The proposed benchmark exhibits a number of different challenges such as large inter-class similarity, long tail distribution, and many classes. We rely on the open access collection of The Met museum to form a large training set of about 224k classes, where each class corresponds to a museum exhibit with photos taken under studio conditions. Testing is primarily performed on photos taken by museum guests depicting exhibits, which introduces a distribution shift between training and testing. Testing is additionally performed on a set of images not related to Met exhibits making the task resemble an out-of-distribution detection problem. The proposed benchmark follows the paradigm of other recent datasets for instance-level recognition on different domains to encourage research on domain independent approaches. A number of suitable approaches are evaluated to offer a testbed for future comparisons. Self-supervised and supervised contrastive learning are effectively combined to train the backbone which is used for non-parametric classification that is shown as a promising direction. Dataset webpage: http://cmp.felk.cvut.cz/met/