Abstract:Recent developments in aligning Large Language Models (LLMs) with human preferences have significantly enhanced their utility in human-AI collaborative scenarios. However, such approaches often neglect the critical role of "epistemic friction," or the inherent resistance encountered when updating beliefs in response to new, conflicting, or ambiguous information. In this paper, we define dynamic epistemic friction as the resistance to epistemic integration, characterized by the misalignment between an agent's current belief state and new propositions supported by external evidence. We position this within the framework of Dynamic Epistemic Logic (Van Benthem and Pacuit, 2011), where friction emerges as nontrivial belief-revision during the interaction. We then present analyses from a situated collaborative task that demonstrate how this model of epistemic friction can effectively predict belief updates in dialogues, and we subsequently discuss how the model of belief alignment as a measure of epistemic resistance or friction can naturally be made more sophisticated to accommodate the complexities of real-world dialogue scenarios.
Abstract:AI support of collaborative interactions entails mediating potential misalignment between interlocutor beliefs. Common preference alignment methods like DPO excel in static settings, but struggle in dynamic collaborative tasks where the explicit signals of interlocutor beliefs are sparse and skewed. We propose the Frictional Agent Alignment Framework (FAAF), to generate precise, context-aware "friction" that prompts for deliberation and re-examination of existing evidence. FAAF's two-player objective decouples from data skew: a frictive-state policy identifies belief misalignments, while an intervention policy crafts collaborator-preferred responses. We derive an analytical solution to this objective, enabling training a single policy via a simple supervised loss. Experiments on three benchmarks show FAAF outperforms competitors in producing concise, interpretable friction and in OOD generalization. By aligning LLMs to act as adaptive "thought partners" -- not passive responders -- FAAF advances scalable, dynamic human-AI collaboration. Our code and data can be found at https://github.com/csu-signal/FAAF_ACL.
Abstract:We present TRACE, a novel system for live *common ground* tracking in situated collaborative tasks. With a focus on fast, real-time performance, TRACE tracks the speech, actions, gestures, and visual attention of participants, uses these multimodal inputs to determine the set of task-relevant propositions that have been raised as the dialogue progresses, and tracks the group's epistemic position and beliefs toward them as the task unfolds. Amid increased interest in AI systems that can mediate collaborations, TRACE represents an important step forward for agents that can engage with multiparty, multimodal discourse.
Abstract:Our goal is to develop an AI Partner that can provide support for group problem solving and social dynamics. In multi-party working group environments, multimodal analytics is crucial for identifying non-verbal interactions of group members. In conjunction with their verbal participation, this creates an holistic understanding of collaboration and engagement that provides necessary context for the AI Partner. In this demo, we illustrate our present capabilities at detecting and tracking nonverbal behavior in student task-oriented interactions in the classroom, and the implications for tracking common ground and engagement.
Abstract:Question-asking in collaborative dialogue has long been established as key to knowledge construction, both in internal and collaborative problem solving. In this work, we examine probing questions in collaborative dialogues: questions that explicitly elicit responses from the speaker's interlocutors. Specifically, we focus on modeling the causal relations that lead directly from utterances earlier in the dialogue to the emergence of the probing question. We model these relations using a novel graph-based framework of deliberation chains, and reframe the problem of constructing such chains as a coreference-style clustering problem. Our framework jointly models probing and causal utterances and the links between them, and we evaluate on two challenging collaborative task datasets: the Weights Task and DeliData. Our results demonstrate the effectiveness of our theoretically-grounded approach compared to both baselines and stronger coreference approaches, and establish a standard of performance in this novel task.
Abstract:Reward modeling of human preferences is one of the cornerstones of building usable generative large language models (LLMs). While traditional RLHF-based alignment methods explicitly maximize the expected rewards from a separate reward model, more recent supervised alignment methods like Direct Preference Optimization (DPO) circumvent this phase to avoid problems including model drift and reward overfitting. Although popular due to its simplicity, DPO and similar direct alignment methods can still lead to degenerate policies, and rely heavily on the Bradley-Terry-based preference formulation to model reward differences between pairs of candidate outputs. This formulation is challenged by non-deterministic or noisy preference labels, for example human scoring of two candidate outputs is of low confidence. In this paper, we introduce DRDO (Direct Reward Distillation and policy-Optimization), a supervised knowledge distillation-based preference alignment method that simultaneously models rewards and preferences to avoid such degeneracy. DRDO directly mimics rewards assigned by an oracle while learning human preferences from a novel preference likelihood formulation. Our experimental results on the Ultrafeedback and TL;DR datasets demonstrate that policies trained using DRDO surpass previous methods such as DPO and e-DPO in terms of expected rewards and are more robust, on average, to noisy preference signals as well as out-of-distribution (OOD) settings.
Abstract:Metacognition is the concept of reasoning about an agent's own internal processes and was originally introduced in the field of developmental psychology. In this position paper, we examine the concept of applying metacognition to artificial intelligence. We introduce a framework for understanding metacognitive artificial intelligence (AI) that we call TRAP: transparency, reasoning, adaptation, and perception. We discuss each of these aspects in-turn and explore how neurosymbolic AI (NSAI) can be leveraged to address challenges of metacognition.
Abstract:We offer philosophical motivations for a method we call Virtual World Cognitive Science (VW CogSci), in which researchers use virtual embodied agents that are embedded in virtual worlds to explore questions in the field of Cognitive Science. We focus on questions about mental and linguistic representation and the ways that such computational modeling can add rigor to philosophical thought experiments, as well as the terminology used in the scientific study of such representations. We find that this method forces researchers to take a god's-eye view when describing dynamical relationships between entities in minds and entities in an environment in a way that eliminates the need for problematic talk of belief and concept types, such as the belief that cats are silly, and the concept CAT, while preserving belief and concept tokens in individual cognizers' minds. We conclude with some further key advantages of VW CogSci for the scientific study of mental and linguistic representation and for Cognitive Science more broadly.
Abstract:Event coreference resolution (ECR) is the task of determining whether distinct mentions of events within a multi-document corpus are actually linked to the same underlying occurrence. Images of the events can help facilitate resolution when language is ambiguous. Here, we propose a multimodal cross-document event coreference resolution method that integrates visual and textual cues with a simple linear map between vision and language models. As existing ECR benchmark datasets rarely provide images for all event mentions, we augment the popular ECB+ dataset with event-centric images scraped from the internet and generated using image diffusion models. We establish three methods that incorporate images and text for coreference: 1) a standard fused model with finetuning, 2) a novel linear mapping method without finetuning and 3) an ensembling approach based on splitting mention pairs by semantic and discourse-level difficulty. We evaluate on 2 datasets: the augmented ECB+, and AIDA Phase 1. Our ensemble systems using cross-modal linear mapping establish an upper limit (91.9 CoNLL F1) on ECB+ ECR performance given the preprocessing assumptions used, and establish a novel baseline on AIDA Phase 1. Our results demonstrate the utility of multimodal information in ECR for certain challenging coreference problems, and highlight a need for more multimodal resources in the coreference resolution space.
Abstract:In NLP, Event Coreference Resolution (ECR) is the task of connecting event clusters that refer to the same underlying real-life event, usually via neural systems. In this work, we investigate using abductive free-text rationales (FTRs) generated by modern autoregressive LLMs as distant supervision of smaller student models for cross-document coreference (CDCR) of events. We implement novel rationale-oriented event clustering and knowledge distillation methods for event coreference scoring that leverage enriched information from the FTRs for improved CDCR without additional annotation or expensive document clustering. Our model using coreference specific knowledge distillation achieves SOTA B3 F1 on the ECB+ and GVC corpora and we establish a new baseline on the AIDA Phase 1 corpus. Our code can be found at https://github.com/csu-signal/llama_cdcr