Abstract:The use of Large Language Models (LLMs) for generating Behavior Trees (BTs) has recently gained attention in the robotics community, yet remains in its early stages of development. In this paper, we propose a novel framework that leverages Vision-Language Models (VLMs) to interactively generate and edit BTs that address visual conditions, enabling context-aware robot operations in visually complex environments. A key feature of our approach lies in the conditional control through self-prompted visual conditions. Specifically, the VLM generates BTs with visual condition nodes, where conditions are expressed as free-form text. Another VLM process integrates the text into its prompt and evaluates the conditions against real-world images during robot execution. We validated our framework in a real-world cafe scenario, demonstrating both its feasibility and limitations.
Abstract:Multi-step dexterous manipulation is a fundamental skill in household scenarios, yet remains an underexplored area in robotics. This paper proposes a modular approach, where each step of the manipulation process is addressed with dedicated policies based on effective modality input, rather than relying on a single end-to-end model. To demonstrate this, a dexterous robotic hand performs a manipulation task involving picking up and rotating a box. Guided by insights from neuroscience, the task is decomposed into three sub-skills, 1)reaching, 2)grasping and lifting, and 3)in-hand rotation, based on the dominant sensory modalities employed in the human brain. Each sub-skill is addressed using distinct methods from a practical perspective: a classical controller, a Vision-Language-Action model, and a reinforcement learning policy with force feedback, respectively. We tested the pipeline on a real robot to demonstrate the feasibility of our approach. The key contribution of this study lies in presenting a neuroscience-inspired, modality-driven methodology for multi-step dexterous manipulation.
Abstract:In-hand tool manipulation is an operation that not only manipulates a tool within the hand (i.e., in-hand manipulation) but also achieves a grasp suitable for a task after the manipulation. This study aims to achieve an in-hand tool manipulation skill through deep reinforcement learning. The difficulty of learning the skill arises because this manipulation requires (A) exploring long-term contact-state changes to achieve the desired grasp and (B) highly-varied motions depending on the contact-state transition. (A) leads to a sparsity of a reward on a successful grasp, and (B) requires an RL agent to explore widely within the state-action space to learn highly-varied actions, leading to sample inefficiency. To address these issues, this study proposes Action Primitives based on Contact-state Transition (APriCoT). APriCoT decomposes the manipulation into short-term action primitives by describing the operation as a contact-state transition based on three action representations (detach, crossover, attach). In each action primitive, fingers are required to perform short-term and similar actions. By training a policy for each primitive, we can mitigate the issues from (A) and (B). This study focuses on a fundamental operation as an example of in-hand tool manipulation: rotating an elongated object grasped with a precision grasp by half a turn to achieve the initial grasp. Experimental results demonstrated that ours succeeded in both the rotation and the achievement of the desired grasp, unlike existing studies. Additionally, it was found that the policy was robust to changes in object shape.
Abstract:To use new robot hardware in a new environment, it is necessary to develop a control program tailored to that specific robot in that environment. Considering the reusability of software among robots is crucial to minimize the effort involved in this process and maximize software reuse across different robots in different environments. This paper proposes a method to remedy this process by considering hardware-level reusability, using Learning-from-observation (LfO) paradigm with a pre-designed skill-agent library. The LfO framework represents the required actions in hardware-independent representations, referred to as task models, from observing human demonstrations, capturing the necessary parameters for the interaction between the environment and the robot. When executing the desired actions from the task models, a set of skill agents is employed to convert the representations into robot commands. This paper focuses on the latter part of the LfO framework, utilizing the set to generate robot actions from the task models, and explores a hardware-independent design approach for these skill agents. These skill agents are described in a hardware-independent manner, considering the relative relationship between the robot's hand position and the environment. As a result, it is possible to execute these actions on robots with different hardware configurations by simply swapping the inverse kinematics solver. This paper, first, defines a necessary and sufficient skill-agent set corresponding to cover all possible actions, and considers the design principles for these skill agents in the library. We provide concrete examples of such skill agents and demonstrate the practicality of using these skill agents by showing that the same representations can be executed on two different robots, Nextage and Fetch, using the proposed skill-agents set.
Abstract:Recent advancements in large foundation models have remarkably enhanced our understanding of sensory information in open-world environments. In leveraging the power of foundation models, it is crucial for AI research to pivot away from excessive reductionism and toward an emphasis on systems that function as cohesive wholes. Specifically, we emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions. The emerging field of Agent AI spans a wide range of existing embodied and agent-based multimodal interactions, including robotics, gaming, and healthcare systems, etc. In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model. On top of this idea, we discuss how agent AI exhibits remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition. Furthermore, we discuss the potential of Agent AI from an interdisciplinary perspective, underscoring AI cognition and consciousness within scientific discourse. We believe that those discussions serve as a basis for future research directions and encourage broader societal engagement.
Abstract:The development of artificial intelligence systems is transitioning from creating static, task-specific models to dynamic, agent-based systems capable of performing well in a wide range of applications. We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents across a wide range of domains, datasets, and tasks. Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction, enabling a versatile and adaptable AI framework. We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare. Our model demonstrates its ability to generate meaningful and contextually relevant outputs in each area. The strength of our approach lies in its generality, leveraging a variety of data sources such as robotics sequences, gameplay data, large-scale video datasets, and textual information for effective multimodal and multi-task learning. Our approach provides a promising avenue for developing generalist, action-taking, multimodal systems.
Abstract:Multi-modal AI systems will likely become a ubiquitous presence in our everyday lives. A promising approach to making these systems more interactive is to embody them as agents within physical and virtual environments. At present, systems leverage existing foundation models as the basic building blocks for the creation of embodied agents. Embedding agents within such environments facilitates the ability of models to process and interpret visual and contextual data, which is critical for the creation of more sophisticated and context-aware AI systems. For example, a system that can perceive user actions, human behavior, environmental objects, audio expressions, and the collective sentiment of a scene can be used to inform and direct agent responses within the given environment. To accelerate research on agent-based multimodal intelligence, we define "Agent AI" as a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data, and can produce meaningful embodied action with infinite agent. In particular, we explore systems that aim to improve agents based on next-embodied action prediction by incorporating external knowledge, multi-sensory inputs, and human feedback. We argue that by developing agentic AI systems in grounded environments, one can also mitigate the hallucinations of large foundation models and their tendency to generate environmentally incorrect outputs. The emerging field of Agent AI subsumes the broader embodied and agentic aspects of multimodal interactions. Beyond agents acting and interacting in the physical world, we envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
Abstract:We introduce a pipeline that enhances a general-purpose Vision Language Model, GPT-4V(ision), by integrating observations of human actions to facilitate robotic manipulation. This system analyzes videos of humans performing tasks and creates executable robot programs that incorporate affordance insights. The computation starts by analyzing the videos with GPT-4V to convert environmental and action details into text, followed by a GPT-4-empowered task planner. In the following analyses, vision systems reanalyze the video with the task plan. Object names are grounded using an open-vocabulary object detector, while focus on the hand-object relation helps to detect the moment of grasping and releasing. This spatiotemporal grounding allows the vision systems to further gather affordance data (e.g., grasp type, way points, and body postures). Experiments across various scenarios demonstrate this method's efficacy in achieving real robots' operations from human demonstrations in a zero-shot manner. The prompts of GPT-4V/GPT-4 are available at this project page: https://microsoft.github.io/GPT4Vision-Robot-Manipulation-Prompts/
Abstract:Robot manipulation in a physically-constrained environment requires compliant manipulation. Compliant manipulation is a manipulation skill to adjust hand motion based on the force imposed by the environment. Recently, reinforcement learning (RL) has been applied to solve household operations involving compliant manipulation. However, previous RL methods have primarily focused on designing a policy for a specific operation that limits their applicability and requires separate training for every new operation. We propose a constraint-aware policy that is applicable to various unseen manipulations by grouping several manipulations together based on the type of physical constraint involved. The type of physical constraint determines the characteristic of the imposed force direction; thus, a generalized policy is trained in the environment and reward designed on the basis of this characteristic. This paper focuses on two types of physical constraints: prismatic and revolute joints. Experiments demonstrated that the same policy could successfully execute various compliant-manipulation operations, both in the simulation and reality. We believe this study is the first step toward realizing a generalized household-robot.
Abstract:This technical report explores the ability of ChatGPT in recognizing emotions from text, which can be the basis of various applications like interactive chatbots, data annotation, and mental health analysis. While prior research has shown ChatGPT's basic ability in sentiment analysis, its performance in more nuanced emotion recognition is not yet explored. Here, we conducted experiments to evaluate its performance of emotion recognition across different datasets and emotion labels. Our findings indicate a reasonable level of reproducibility in its performance, with noticeable improvement through fine-tuning. However, the performance varies with different emotion labels and datasets, highlighting an inherent instability and possible bias. The choice of dataset and emotion labels significantly impacts ChatGPT's emotion recognition performance. This paper sheds light on the importance of dataset and label selection, and the potential of fine-tuning in enhancing ChatGPT's emotion recognition capabilities, providing a groundwork for better integration of emotion analysis in applications using ChatGPT.