Abstract:Dynamic structure of languages poses significant challenges in applying natural language processing models on historical texts, causing decreased performance in various downstream tasks. Turkish is a prominent example of rapid linguistic transformation due to the language reform in the 20th century. In this paper, we propose two methods for detecting synonyms used in different time periods, focusing on Turkish. In our first method, we use Orthogonal Procrustes method to align the embedding spaces created using documents written in the corresponding time periods. In our second method, we extend the first one by incorporating Spearman's correlation between frequencies of words throughout the years. In our experiments, we show that our proposed methods outperform the baseline method. Furthermore, we observe that the efficacy of our methods remains consistent when the target time period shifts from the 1960s to the 1980s. However, their performance slightly decreases for subsequent time periods.
Abstract:Natural Question Answering (QA) datasets play a crucial role in developing and evaluating the capabilities of large language models (LLMs), ensuring their effective usage in real-world applications. Despite the numerous QA datasets that have been developed, there is a notable lack of region-specific datasets generated by native users in their own languages. This gap hinders the effective benchmarking of LLMs for regional and cultural specificities. In this study, we propose a scalable framework, NativQA, to seamlessly construct culturally and regionally aligned QA datasets in native languages, for LLM evaluation and tuning. Moreover, to demonstrate the efficacy of the proposed framework, we designed a multilingual natural QA dataset, MultiNativQA, consisting of ~72K QA pairs in seven languages, ranging from high to extremely low resource, based on queries from native speakers covering 18 topics. We benchmark the MultiNativQA dataset with open- and closed-source LLMs. We made both the framework NativQA and MultiNativQA dataset publicly available for the community. (https://nativqa.gitlab.io)
Abstract:Over the past century, the Turkish language has undergone substantial changes, primarily driven by governmental interventions. In this work, our goal is to investigate the evolution of the Turkish language since the establishment of T\"urkiye in 1923. Thus, we first introduce Turkronicles which is a diachronic corpus for Turkish derived from the Official Gazette of T\"urkiye. Turkronicles contains 45,375 documents, detailing governmental actions, making it a pivotal resource for analyzing the linguistic evolution influenced by the state policies. In addition, we expand an existing diachronic Turkish corpus which consists of the records of the Grand National Assembly of T\"urkiye by covering additional years. Next, combining these two diachronic corpora, we seek answers for two main research questions: How have the Turkish vocabulary and the writing conventions changed since the 1920s? Our analysis reveals that the vocabularies of two different time periods diverge more as the time between them increases, and newly coined Turkish words take the place of their old counterparts. We also observe changes in writing conventions. In particular, the use of circumflex noticeably decreases and words ending with the letters "-b" and "-d" are successively replaced with "-p" and "-t" letters, respectively. Overall, this study quantitatively highlights the dramatic changes in Turkish from various aspects of the language in a diachronic perspective.
Abstract:Potential harms of Large Language Models such as mass misinformation and plagiarism can be partially mitigated if there exists a reliable way to detect machine generated text. In this paper, we propose a new watermarking method to detect machine-generated texts. Our method embeds a unique pattern within the generated text, ensuring that while the content remains coherent and natural to human readers, it carries distinct markers that can be identified algorithmically. Specifically, we intervene with the token sampling process in a way which enables us to trace back our token choices during the detection phase. We show how watermarking affects textual quality and compare our proposed method with a state-of-the-art watermarking method in terms of robustness and detectability. Through extensive experiments, we demonstrate the effectiveness of our watermarking scheme in distinguishing between watermarked and non-watermarked text, achieving high detection rates while maintaining textual quality.
Abstract:In evaluation campaigns, participants often explore variations of popular, state-of-the-art baselines as a low-risk strategy to achieve competitive results. While effective, this can lead to local "hill climbing" rather than more radical and innovative departure from standard methods. Moreover, if many participants build on similar baselines, the overall diversity of approaches considered may be limited. In this work, we propose a new class of IR evaluation metrics intended to promote greater diversity of approaches in evaluation campaigns. Whereas traditional IR metrics focus on user experience, our two "innovation" metrics instead reward exploration of more divergent, higher-risk strategies finding relevant documents missed by other systems. Experiments on four TREC collections show that our metrics do change system rankings by rewarding systems that find such rare, relevant documents. This result is further supported by a controlled, synthetic data experiment, and a qualitative analysis. In addition, we show that our metrics achieve higher evaluation stability and discriminative power than the standard metrics we modify. To support reproducibility, we share our source code.
Abstract:The recent advances in natural language processing have yielded many exciting developments in text analysis and language understanding models; however, these models can also be used to track people, bringing severe privacy concerns. In this work, we investigate what individuals can do to avoid being detected by those models while using social media platforms. We ground our investigation in two exposure-risky tasks, stance detection and geotagging. We explore a variety of simple techniques for modifying text, such as inserting typos in salient words, paraphrasing, and adding dummy social media posts. Our experiments show that the performance of BERT-based models fined tuned for stance detection decreases significantly due to typos, but it is not affected by paraphrasing. Moreover, we find that typos have minimal impact on state-of-the-art geotagging models due to their increased reliance on social networks; however, we show that users can deceive those models by interacting with different users, reducing their performance by almost 50%.
Abstract:In this paper, we propose a novel method for the prior-art search task. We fine-tune SciBERT transformer model using Triplet Network approach, allowing us to represent each patent with a fixed-size vector. This also enables us to conduct efficient vector similarity computations to rank patents in query time. In our experiments, we show that our proposed method outperforms baseline methods.
Abstract:We describe the fourth edition of the CheckThat! Lab, part of the 2021 Conference and Labs of the Evaluation Forum (CLEF). The lab evaluates technology supporting tasks related to factuality, and covers Arabic, Bulgarian, English, Spanish, and Turkish. Task 1 asks to predict which posts in a Twitter stream are worth fact-checking, focusing on COVID-19 and politics (in all five languages). Task 2 asks to determine whether a claim in a tweet can be verified using a set of previously fact-checked claims (in Arabic and English). Task 3 asks to predict the veracity of a news article and its topical domain (in English). The evaluation is based on mean average precision or precision at rank k for the ranking tasks, and macro-F1 for the classification tasks. This was the most popular CLEF-2021 lab in terms of team registrations: 132 teams. Nearly one-third of them participated: 15, 5, and 25 teams submitted official runs for tasks 1, 2, and 3, respectively.
Abstract:Building a benchmark dataset for hate speech detection presents several challenges. Firstly, because hate speech is relatively rare -- e.g., less than 3\% of Twitter posts are hateful \citep{founta2018large} -- random sampling of tweets to annotate is inefficient in capturing hate speech. A common practice is to only annotate tweets containing known ``hate words'', but this risks yielding a biased benchmark that only partially captures the real-world phenomenon of interest. A second challenge is that definitions of hate speech tend to be highly variable and subjective. Annotators having diverse prior notions of hate speech may not only disagree with one another but also struggle to conform to specified labeling guidelines. Our key insight is that the rarity and subjectivity of hate speech are akin to that of relevance in information retrieval (IR). This connection suggests that well-established methodologies for creating IR test collections might also be usefully applied to create better benchmark datasets for hate speech detection. Firstly, to intelligently and efficiently select which tweets to annotate, we apply established IR techniques of {\em pooling} and {\em active learning}. Secondly, to improve both consistency and value of annotations, we apply {\em task decomposition} \cite{Zhang-sigir14} and {\em annotator rationale} \cite{mcdonnell16-hcomp} techniques. Using the above techniques, we create and share a new benchmark dataset\footnote{We will release the dataset upon publication.} for hate speech detection with broader coverage than prior datasets. We also show a dramatic drop in accuracy of existing detection models when tested on these broader forms of hate. Collected annotator rationales not only provide documented support for labeling decisions but also create exciting future work opportunities for dual-supervision and/or explanation generation in modeling.
Abstract:Shared-task campaigns such as NIST TREC select documents to judge by pooling rankings from many participant systems. Therefore, the quality of the test collection greatly depends on the number of participants and the quality of submitted runs. In this work, we investigate i) how the number of participants, coupled with other factors, affects the quality of a test collection; and ii) whether the quality of a test collection can be inferred prior to collecting relevance judgments. Experiments on six TREC collections demonstrate that the required number of participants to construct a high-quality test collection varies significantly across different test collections due to a variety of factors. Furthermore, results suggest that the quality of test collections can be predicted.