Abstract:Historical maps are valuable resources that capture detailed geographical information from the past. However, these maps are typically available in printed formats, which are not conducive to modern computer-based analyses. Digitizing these maps into a machine-readable format enables efficient computational analysis. In this paper, we propose an automated approach to digitization using deep-learning-based semantic segmentation, which assigns a semantic label to each pixel in scanned historical maps. A key challenge in this process is the lack of ground-truth annotations required for training deep neural networks, as manual labeling is time-consuming and labor-intensive. To address this issue, we introduce a weakly-supervised age-tracing strategy for model fine-tuning. This approach exploits the similarity in appearance and land-use patterns between historical maps from neighboring time periods to guide the training process. Specifically, model predictions for one map are utilized as pseudo-labels for training on maps from adjacent time periods. Experiments conducted on our newly curated \textit{Hameln} dataset demonstrate that the proposed age-tracing strategy significantly enhances segmentation performance compared to baseline models. In the best-case scenario, the mean Intersection over Union (mIoU) achieved 77.3\%, reflecting an improvement of approximately 20\% over baseline methods. Additionally, the fine-tuned model achieved an average overall accuracy of 97\%, highlighting the effectiveness of our approach for digitizing historical maps.
Abstract:Recent advances in mobile mapping systems have greatly enhanced the efficiency and convenience of acquiring urban 3D data. These systems utilize LiDAR sensors mounted on vehicles to capture vast cityscapes. However, a significant challenge arises due to occlusions caused by roadside parked vehicles, leading to the loss of scene information, particularly on the roads, sidewalks, curbs, and the lower sections of buildings. In this study, we present a novel approach that leverages deep neural networks to learn a model capable of filling gaps in urban scenes that are obscured by vehicle occlusion. We have developed an innovative technique where we place virtual vehicle models along road boundaries in the gap-free scene and utilize a ray-casting algorithm to create a new scene with occluded gaps. This allows us to generate diverse and realistic urban point cloud scenes with and without vehicle occlusion, surpassing the limitations of real-world training data collection and annotation. Furthermore, we introduce the Scene Gap Completion Network (SGC-Net), an end-to-end model that can generate well-defined shape boundaries and smooth surfaces within occluded gaps. The experiment results reveal that 97.66% of the filled points fall within a range of 5 centimeters relative to the high-density ground truth point cloud scene. These findings underscore the efficacy of our proposed model in gap completion and reconstructing urban scenes affected by vehicle occlusions.
Abstract:Cooperative perception via communication among intelligent traffic agents has great potential to improve the safety of autonomous driving. However, limited communication bandwidth, localization errors and asynchronized capturing time of sensor data, all introduce difficulties to the data fusion of different agents. To some extend, previous works have attempted to reduce the shared data size, mitigate the spatial feature misalignment caused by localization errors and communication delay. However, none of them have considered the asynchronized sensor ticking times, which can lead to dynamic object misplacement of more than one meter during data fusion. In this work, we propose Time-Aligned COoperative Object Detection (TA-COOD), for which we adapt widely used dataset OPV2V and DairV2X with considering asynchronous LiDAR sensor ticking times and build an efficient fully sparse framework with modeling the temporal information of individual objects with query-based techniques. The experiment results confirmed the superior efficiency of our fully sparse framework compared to the state-of-the-art dense models. More importantly, they show that the point-wise observation timestamps of the dynamic objects are crucial for accurate modeling the object temporal context and the predictability of their time-related locations.
Abstract:Collective Perception has attracted significant attention in recent years due to its advantage for mitigating occlusion and expanding the field-of-view, thereby enhancing reliability, efficiency, and, most crucially, decision-making safety. However, developing collective perception models is highly resource demanding due to extensive requirements of processing input data for many agents, usually dozens of images and point clouds for a single frame. This not only slows down the model development process for collective perception but also impedes the utilization of larger models. In this paper, we propose an agent-based training framework that handles the deep learning modules and agent data separately to have a cleaner data flow structure. This framework not only provides an API for flexibly prototyping the data processing pipeline and defining the gradient calculation for each agent, but also provides the user interface for interactive training, testing and data visualization. Training experiment results of four collective object detection models on the prominent collective perception benchmark OPV2V show that the agent-based training can significantly reduce the GPU memory consumption and training time while retaining inference performance. The framework and model implementations are available at \url{https://github.com/YuanYunshuang/CoSense3D}
Abstract:In this study, we address the challenge of constructing continuous three-dimensional (3D) models that accurately represent uncertain surfaces, derived from noisy and incomplete LiDAR scanning data. Building upon our prior work, which utilized the Gaussian Process (GP) and Gaussian Mixture Model (GMM) for structured building models, we introduce a more generalized approach tailored for complex surfaces in urban scenes, where four-dimensional (4D) GMM Regression and GP with derivative observations are applied. A Hierarchical GMM (HGMM) is employed to optimize the number of GMM components and speed up the GMM training. With the prior map obtained from HGMM, GP inference is followed for the refinement of the final map. Our approach models the implicit surface of the geo-object and enables the inference of the regions that are not completely covered by measurements. The integration of GMM and GP yields well-calibrated uncertainty estimates alongside the surface model, enhancing both accuracy and reliability. The proposed method is evaluated on the real data collected by a mobile mapping system. Compared to the performance in mapping accuracy and uncertainty quantification of other methods such as Gaussian Process Implicit Surface map (GPIS) and log-Gaussian Process Implicit Surface map (Log-GPIS), the proposed method achieves lower RMSEs, higher log-likelihood values and fewer computational costs for the evaluated datasets.
Abstract:In autonomous driving tasks, trajectory prediction in complex traffic environments requires adherence to real-world context conditions and behavior multimodalities. Existing methods predominantly rely on prior assumptions or generative models trained on curated data to learn road agents' stochastic behavior bounded by scene constraints. However, they often face mode averaging issues due to data imbalance and simplistic priors, and could even suffer from mode collapse due to unstable training and single ground truth supervision. These issues lead the existing methods to a loss of predictive diversity and adherence to the scene constraints. To address these challenges, we introduce a novel trajectory generator named Controllable Diffusion Trajectory (CDT), which integrates map information and social interactions into a Transformer-based conditional denoising diffusion model to guide the prediction of future trajectories. To ensure multimodality, we incorporate behavioral tokens to direct the trajectory's modes, such as going straight, turning right or left. Moreover, we incorporate the predicted endpoints as an alternative behavioral token into the CDT model to facilitate the prediction of accurate trajectories. Extensive experiments on the Argoverse 2 benchmark demonstrate that CDT excels in generating diverse and scene-compliant trajectories in complex urban settings.
Abstract:Trajectory prediction for autonomous driving must continuously reason the motion stochasticity of road agents and comply with scene constraints. Existing methods typically rely on one-stage trajectory prediction models, which condition future trajectories on observed trajectories combined with fused scene information. However, they often struggle with complex scene constraints, such as those encountered at intersections. To this end, we present a novel method, called LAformer. It uses a temporally dense lane-aware estimation module to select only the top highly potential lane segments in an HD map, which effectively and continuously aligns motion dynamics with scene information, reducing the representation requirements for the subsequent attention-based decoder by filtering out irrelevant lane segments. Additionally, unlike one-stage prediction models, LAformer utilizes predictions from the first stage as anchor trajectories and adds a second-stage motion refinement module to further explore temporal consistency across the complete time horizon. Extensive experiments on Argoverse 1 and nuScenes demonstrate that LAformer achieves excellent performance for multimodal trajectory prediction.
Abstract:Predicting trajectories of pedestrians based on goal information in highly interactive scenes is a crucial step toward Intelligent Transportation Systems and Autonomous Driving. The challenges of this task come from two key sources: (1) complex social interactions in high pedestrian density scenarios and (2) limited utilization of goal information to effectively associate with past motion information. To address these difficulties, we integrate social forces into a Transformer-based stochastic generative model backbone and propose a new goal-based trajectory predictor called ForceFormer. Differentiating from most prior works that simply use the destination position as an input feature, we leverage the driving force from the destination to efficiently simulate the guidance of a target on a pedestrian. Additionally, repulsive forces are used as another input feature to describe the avoidance action among neighboring pedestrians. Extensive experiments show that our proposed method achieves on-par performance measured by distance errors with the state-of-the-art models but evidently decreases collisions, especially in dense pedestrian scenarios on widely used pedestrian datasets.
Abstract:Safety is critical for autonomous driving, and one aspect of improving safety is to accurately capture the uncertainties of the perception system, especially knowing the unknown. Different from only providing deterministic or probabilistic results, e.g., probabilistic object detection, that only provide partial information for the perception scenario, we propose a complete probabilistic model named GevBEV. It interprets the 2D driving space as a probabilistic Bird's Eye View (BEV) map with point-based spatial Gaussian distributions, from which one can draw evidence as the parameters for the categorical Dirichlet distribution of any new sample point in the continuous driving space. The experimental results show that GevBEV not only provides more reliable uncertainty quantification but also outperforms the previous works on the benchmark OPV2V of BEV map interpretation for cooperative perception. A critical factor in cooperative perception is the data transmission size through the communication channels. GevBEV helps reduce communication overhead by selecting only the most important information to share from the learned uncertainty, reducing the average information communicated by 80% with a slight performance drop.
Abstract:Mapping with uncertainty representation is required in many research domains, such as localization and sensor fusion. Although there are many uncertainty explorations in pose estimation of an ego-robot with map information, the quality of the reference maps is often neglected. To avoid the potential problems caused by the errors of maps and a lack of the uncertainty quantification, an adequate uncertainty measure for the maps is required. In this paper, uncertain building models with abstract map surface using Gaussian Process (GP) is proposed to measure the map uncertainty in a probabilistic way. To reduce the redundant computation for simple planar objects, extracted facets from a Gaussian Mixture Model (GMM) are combined with the implicit GP map while local GP-block techniques are used as well. The proposed method is evaluated on LiDAR point clouds of city buildings collected by a mobile mapping system. Compared to the performances of other methods such like Octomap, Gaussian Process Occupancy Map (GPOM) and Bayersian Generalized Kernel Inference (BGKOctomap), our method has achieved higher Precision-Recall AUC for evaluated buildings.