IBM
Abstract:Realizing the vision of using AI agents to automate critical IT tasks depends on the ability to measure and understand effectiveness of proposed solutions. We introduce ITBench, a framework that offers a systematic methodology for benchmarking AI agents to address real-world IT automation tasks. Our initial release targets three key areas: Site Reliability Engineering (SRE), Compliance and Security Operations (CISO), and Financial Operations (FinOps). The design enables AI researchers to understand the challenges and opportunities of AI agents for IT automation with push-button workflows and interpretable metrics. ITBench includes an initial set of 94 real-world scenarios, which can be easily extended by community contributions. Our results show that agents powered by state-of-the-art models resolve only 13.8% of SRE scenarios, 25.2% of CISO scenarios, and 0% of FinOps scenarios. We expect ITBench to be a key enabler of AI-driven IT automation that is correct, safe, and fast.
Abstract:With the promise of reliability in cloud, more enterprises are migrating to cloud. The process of continuous integration/deployment (CICD) in cloud connects developers who need to deliver value faster and more transparently with site reliability engineers (SREs) who need to manage applications reliably. SREs feed back development issues to developers, and developers commit fixes and trigger CICD to redeploy. The release cycle is more continuous than ever, thus the code to production is faster and more automated. To provide this higher level agility, the cloud platforms become more complex in the face of flexibility with deeper layers of virtualization. However, reliability does not come for free with all these complexities. Software engineers and SREs need to deal with wider information spectrum from virtualized layers. Therefore, providing correlated information with true positive evidences is critical to identify the root cause of issues quickly in order to reduce mean time to recover (MTTR), performance metrics for SREs. Similarity, knowledge, or statistics driven approaches have been effective, but with increasing data volume and types, an individual approach is limited to correlate semantic relations of different data sources. In this paper, we introduce FIXME to enhance software reliability with hybrid diagnosis approaches for enterprises. Our evaluation results show using hybrid diagnosis approach is about 17% better in precision. The results are helpful for both practitioners and researchers to develop hybrid diagnosis in the highly dynamic cloud environment.