Abstract:Large Language Models (LLMs) have revolutionized natural language processing tasks. However, their practical application is constrained by substantial memory and computational demands. Post-training quantization (PTQ) is considered an effective method to accelerate LLM inference. Despite its growing popularity in LLM model compression, PTQ deployment faces two major challenges. First, low-bit quantization leads to performance degradation. Second, restricted by the limited integer computing unit type on GPUs, quantized matrix operations with different precisions cannot be effectively accelerated. To address these issues, we introduce a novel arbitrary-bit quantization algorithm and inference framework, ABQ-LLM. It achieves superior performance across various quantization settings and enables efficient arbitrary-precision quantized inference on the GPU. ABQ-LLM introduces several key innovations: (1) a distribution correction method for transformer blocks to mitigate distribution differences caused by full quantization of weights and activations, improving performance at low bit-widths. (2) the bit balance strategy to counteract performance degradation from asymmetric distribution issues at very low bit-widths (e.g., 2-bit). (3) an innovative quantization acceleration framework that reconstructs the quantization matrix multiplication of arbitrary precision combinations based on BTC (Binary TensorCore) equivalents, gets rid of the limitations of INT4/INT8 computing units. ABQ-LLM can convert each component bit width gain into actual acceleration gain, maximizing performance under mixed precision(e.g., W6A6, W2A8). Based on W2*A8 quantization configuration on LLaMA-7B model, it achieved a WikiText2 perplexity of 7.59 (2.17$\downarrow $ vs 9.76 in AffineQuant). Compared to SmoothQuant, we realized 1.6$\times$ acceleration improvement and 2.7$\times$ memory compression gain.
Abstract:In this paper, we introduce a new dataset in the medical field of Traumatic Brain Injury (TBI), called TBI-IT, which includes both electronic medical records (EMRs) and head CT images. This dataset is designed to enhance the accuracy of artificial intelligence in the diagnosis and treatment of TBI. This dataset, built upon the foundation of standard text and image data, incorporates specific annotations within the EMRs, extracting key content from the text information, and categorizes the annotation content of imaging data into five types: brain midline, hematoma, left cerebral ventricle, right cerebral ventricle and fracture. TBI-IT aims to be a foundational dataset for feature learning in image segmentation tasks and named entity recognition.
Abstract:In this paper, we introduce a new dataset in the medical field of hypertensive intracerebral hemorrhage (HICH), called HICH-IT, which includes both electronic medical records (EMRs) and head CT images. This dataset is designed to enhance the accuracy of artificial intelligence in the diagnosis and treatment of HICH. This dataset, built upon the foundation of standard text and image data, incorporates specific annotations within the EMRs, extracting key content from the text information, and categorizes the annotation content of imaging data into four types: brain midline, hematoma, left and right cerebral ventricle. HICH-IT aims to be a foundational dataset for feature learning in image segmentation tasks and named entity recognition. To further understand the dataset, we have trained deep learning algorithms to observe the performance. The pretrained models have been released at both www.daip.club and github.com/Deep-AI-Application-DAIP. The dataset has been uploaded to https://github.com/CYBUS123456/HICH-IT-Datasets. Index Terms-HICH, Deep learning, Intraparenchymal hemorrhage, named entity recognition, novel dataset