Abstract:In this paper, we introduce a new dataset in the medical field of Traumatic Brain Injury (TBI), called TBI-IT, which includes both electronic medical records (EMRs) and head CT images. This dataset is designed to enhance the accuracy of artificial intelligence in the diagnosis and treatment of TBI. This dataset, built upon the foundation of standard text and image data, incorporates specific annotations within the EMRs, extracting key content from the text information, and categorizes the annotation content of imaging data into five types: brain midline, hematoma, left cerebral ventricle, right cerebral ventricle and fracture. TBI-IT aims to be a foundational dataset for feature learning in image segmentation tasks and named entity recognition.
Abstract:In this paper, we introduce a new dataset in the medical field of hypertensive intracerebral hemorrhage (HICH), called HICH-IT, which includes both electronic medical records (EMRs) and head CT images. This dataset is designed to enhance the accuracy of artificial intelligence in the diagnosis and treatment of HICH. This dataset, built upon the foundation of standard text and image data, incorporates specific annotations within the EMRs, extracting key content from the text information, and categorizes the annotation content of imaging data into four types: brain midline, hematoma, left and right cerebral ventricle. HICH-IT aims to be a foundational dataset for feature learning in image segmentation tasks and named entity recognition. To further understand the dataset, we have trained deep learning algorithms to observe the performance. The pretrained models have been released at both www.daip.club and github.com/Deep-AI-Application-DAIP. The dataset has been uploaded to https://github.com/CYBUS123456/HICH-IT-Datasets. Index Terms-HICH, Deep learning, Intraparenchymal hemorrhage, named entity recognition, novel dataset