Abstract:Recent advancements in machine learning (ML) are transforming the field of structural biology. For example, AlphaFold, a groundbreaking neural network for protein structure prediction, has been widely adopted by researchers. The availability of easy-to-use interfaces and interpretable outcomes from the neural network architecture, such as the confidence scores used to color the predicted structures, have made AlphaFold accessible even to non-ML experts. In this paper, we present various methods for representing protein 3D structures from low- to high-resolution, and show how interpretable ML methods can support tasks such as predicting protein structures, protein function, and protein-protein interactions. This survey also emphasizes the significance of interpreting and visualizing ML-based inference for structure-based protein representations that enhance interpretability and knowledge discovery. Developing such interpretable approaches promises to further accelerate fields including drug development and protein design.
Abstract:Drawing parallels between human cognition and artificial intelligence, we explored how large language models (LLMs) internalize identities imposed by targeted prompts. Informed by Social Identity Theory, these identity assignments lead LLMs to distinguish between "we" (the ingroup) and "they" (the outgroup). This self-categorization generates both ingroup favoritism and outgroup bias. Nonetheless, existing literature has predominantly focused on ingroup favoritism, often overlooking outgroup bias, which is a fundamental source of intergroup prejudice and discrimination. Our experiment addresses this gap by demonstrating that outgroup bias manifests as strongly as ingroup favoritism. Furthermore, we successfully mitigated the inherent pro-liberal, anti-conservative bias in LLMs by guiding them to adopt the perspectives of the initially disfavored group. These results were replicated in the context of gender bias. Our findings highlight the potential to develop more equitable and balanced language models.
Abstract:The spread of fake news negatively impacts individuals and is regarded as a significant social challenge that needs to be addressed. A number of algorithmic and insightful features have been identified for detecting fake news. However, with the recent LLMs and their advanced generation capabilities, many of the detectable features (e.g., style-conversion attacks) can be altered, making it more challenging to distinguish from real news. This study proposes adversarial style augmentation, AdStyle, to train a fake news detector that remains robust against various style-conversion attacks. Our model's key mechanism is the careful use of LLMs to automatically generate a diverse yet coherent range of style-conversion attack prompts. This improves the generation of prompts that are particularly difficult for the detector to handle. Experiments show that our augmentation strategy improves robustness and detection performance when tested on fake news benchmark datasets.
Abstract:The increasing frequency and intensity of natural disasters demand more sophisticated approaches for rapid and precise damage assessment. To tackle this issue, researchers have developed various methods on disaster benchmark datasets from satellite imagery to aid in detecting disaster damage. However, the diverse nature of geographical landscapes and disasters makes it challenging to apply existing methods to regions unseen during training. We present DAVI (Disaster Assessment with VIsion foundation model), which overcomes domain disparities and detects structural damage (e.g., building) without requiring ground-truth labels of the target region. DAVI integrates task-specific knowledge from a model trained on source regions with an image segmentation foundation model to generate pseudo labels of possible damage in the target region. It then employs a two-stage refinement process, targeting both the pixel and overall image, to more accurately pinpoint changes in disaster-struck areas based on before-and-after images. Comprehensive evaluations demonstrate that DAVI achieves exceptional performance across diverse terrains (e.g., USA and Mexico) and disaster types (e.g., wildfires, hurricanes, and earthquakes). This confirms its robustness in assessing disaster impact without dependence on ground-truth labels.
Abstract:Proteins are complex molecules responsible for different functions in nature. Enhancing the functionality of proteins and cellular fitness can significantly impact various industries. However, protein optimization using computational methods remains challenging, especially when starting from low-fitness sequences. We propose LatProtRL, an optimization method to efficiently traverse a latent space learned by an encoder-decoder leveraging a large protein language model. To escape local optima, our optimization is modeled as a Markov decision process using reinforcement learning acting directly in latent space. We evaluate our approach on two important fitness optimization tasks, demonstrating its ability to achieve comparable or superior fitness over baseline methods. Our findings and in vitro evaluation show that the generated sequences can reach high-fitness regions, suggesting a substantial potential of LatProtRL in lab-in-the-loop scenarios.
Abstract:Federated learning combines local updates from clients to produce a global model, which is susceptible to poisoning attacks. Most previous defense strategies relied on vectors derived from projections of local updates on a Euclidean space; however, these methods fail to accurately represent the functionality and structure of local models, resulting in inconsistent performance. Here, we present a new paradigm to defend against poisoning attacks in federated learning using functional mappings of local models based on intermediate outputs. Experiments show that our mechanism is robust under a broad range of computing conditions and advanced attack scenarios, enabling safer collaboration among data-sensitive participants via federated learning.
Abstract:We explored cultural biases-individualism vs. collectivism-in ChatGPT across three Western languages (i.e., English, German, and French) and three Eastern languages (i.e., Chinese, Japanese, and Korean). When ChatGPT adopted an individualistic persona in Western languages, its collectivism scores (i.e., out-group values) exhibited a more negative trend, surpassing their positive orientation towards individualism (i.e., in-group values). Conversely, when a collectivistic persona was assigned to ChatGPT in Eastern languages, a similar pattern emerged with more negative responses toward individualism (i.e., out-group values) as compared to collectivism (i.e., in-group values). The results indicate that when imbued with a particular social identity, ChatGPT discerns in-group and out-group, embracing in-group values while eschewing out-group values. Notably, the negativity towards the out-group, from which prejudices and discrimination arise, exceeded the positivity towards the in-group. The experiment was replicated in the political domain, and the results remained consistent. Furthermore, this replication unveiled an intrinsic Democratic bias in Large Language Models (LLMs), aligning with earlier findings and providing integral insights into mitigating such bias through prompt engineering. Extensive robustness checks were performed using varying hyperparameter and persona setup methods, with or without social identity labels, across other popular language models.
Abstract:Climate change is one of the most critical challenges that our planet is facing today. Rising global temperatures are already bringing noticeable changes to Earth's weather and climate patterns with an increased frequency of unpredictable and extreme weather events. Future projections for climate change research are based on Earth System Models (ESMs), the computer models that simulate the Earth's climate system. ESMs provide a framework to integrate various physical systems, but their output is bound by the enormous computational resources required for running and archiving higher-resolution simulations. For a given resource budget, the ESMs are generally run on a coarser grid, followed by a computationally lighter $downscaling$ process to obtain a finer-resolution output. In this work, we present a deep-learning model for downscaling ESM simulation data that does not require high-resolution ground truth data for model optimization. This is realized by leveraging salient data distribution patterns and the hidden dependencies between weather variables for an $\textit{individual}$ data point at $\textit{runtime}$. Extensive evaluation with $2$x, $3$x, and $4$x scaling factors demonstrates that the proposed model consistently obtains superior performance over that of various baselines. The improved downscaling performance and no dependence on high-resolution ground truth data make the proposed method a valuable tool for climate research and mark it as a promising direction for future research.
Abstract:The task of assigning internationally accepted commodity codes (aka HS codes) to traded goods is a critical function of customs offices. Like court decisions made by judges, this task follows the doctrine of precedent and can be nontrivial even for experienced officers. Together with the Korea Customs Service (KCS), we propose a first-ever explainable decision supporting model that suggests the most likely subheadings (i.e., the first six digits) of the HS code. The model also provides reasoning for its suggestion in the form of a document that is interpretable by customs officers. We evaluated the model using 5,000 cases that recently received a classification request. The results showed that the top-3 suggestions made by our model had an accuracy of 93.9\% when classifying 925 challenging subheadings. A user study with 32 customs experts further confirmed that our algorithmic suggestions accompanied by explainable reasonings, can substantially reduce the time and effort taken by customs officers for classification reviews.
Abstract:The emergence of tools based on Large Language Models (LLMs), such as OpenAI's ChatGPT, Microsoft's Bing Chat, and Google's Bard, has garnered immense public attention. These incredibly useful, natural-sounding tools mark significant advances in natural language generation, yet they exhibit a propensity to generate false, erroneous, or misleading content -- commonly referred to as "hallucinations." Moreover, LLMs can be exploited for malicious applications, such as generating false but credible-sounding content and profiles at scale. This poses a significant challenge to society in terms of the potential deception of users and the increasing dissemination of inaccurate information. In light of these risks, we explore the kinds of technological innovations, regulatory reforms, and AI literacy initiatives needed from fact-checkers, news organizations, and the broader research and policy communities. By identifying the risks, the imminent threats, and some viable solutions, we seek to shed light on navigating various aspects of veracity in the era of generative AI.