Abstract:AI-guided classification of ecological families, genera, and species underpins global sustainability efforts such as biodiversity monitoring, conservation planning, and policy-making. Progress toward this goal is hindered by long-tailed taxonomic distributions from class imbalance, along with fine-grained taxonomic variations, test-time spatiotemporal domain shifts, and closed-set assumptions that can only recognize previously seen taxa. We introduce the Open-World Ecological Taxonomy Classification, a unified framework that captures the co-occurrence of these challenges in realistic ecological settings. To address them, we propose TaxoNet, an embedding-based encoder with a dual-margin penalization loss that strengthens learning signals from rare underrepresented taxa while mitigating the dominance of overrepresented ones, directly confronting interrelated challenges. We evaluate our method on diverse ecological domains: Google Auto-Arborist (urban trees), iNat-Plantae (Plantae observations from various ecosystems in iNaturalist-2019), and NAFlora-Mini (a curated herbarium collection). Our model consistently outperforms baselines, particularly for rare taxa, establishing a strong foundation for open-world plant taxonomic monitoring. Our findings further show that general-purpose multimodal foundation models remain constrained in plant-domain applications.
Abstract:Access to Water, Sanitation, and Hygiene (WASH) services remains a major public health concern in refugee camps. This study introduces a remote sensing-driven framework to quantify WASH accessibility-specifically to water pumps, latrines, and bathing cubicles-in the Rohingya camps of Cox's Bazar, one of the world's most densely populated displacement settings. Detecting refugee shelters in such emergent camps presents substantial challenges, primarily due to their dense spatial configuration and irregular geometric patterns. Using sub-meter satellite images, we develop a semi-supervised segmentation framework that achieves an F1-score of 76.4% in detecting individual refugee shelters. Applying the framework across multi-year data reveals declining WASH accessibility, driven by rapid refugee population growth and reduced facility availability, rising from 25 people per facility in 2022 to 29.4 in 2025. Gender-disaggregated analysis further shows that women and girls experience reduced accessibility, in scenarios with inadequate safety-related segregation in WASH facilities. These findings suggest the importance of demand-responsive allocation strategies that can identify areas with under-served populations-such as women and girls-and ensure that limited infrastructure serves the greatest number of people in settings with fixed or shrinking budgets. We also discuss the value of high-resolution remote sensing and machine learning to detect inequality and inform equitable resource planning in complex humanitarian environments.
Abstract:Humans display significant uncertainty when confronted with moral dilemmas, yet the extent of such uncertainty in machines and AI agents remains underexplored. Recent studies have confirmed the overly confident tendencies of machine-generated responses, particularly in large language models (LLMs). As these systems are increasingly embedded in ethical decision-making scenarios, it is important to understand their moral reasoning and the inherent uncertainties in building reliable AI systems. This work examines how uncertainty influences moral decisions in the classical trolley problem, analyzing responses from 32 open-source models and 9 distinct moral dimensions. We first find that variance in model confidence is greater across models than within moral dimensions, suggesting that moral uncertainty is predominantly shaped by model architecture and training method. To quantify uncertainty, we measure binary entropy as a linear combination of total entropy, conditional entropy, and mutual information. To examine its effects, we introduce stochasticity into models via "dropout" at inference time. Our findings show that our mechanism increases total entropy, mainly through a rise in mutual information, while conditional entropy remains largely unchanged. Moreover, this mechanism significantly improves human-LLM moral alignment, with correlations in mutual information and alignment score shifts. Our results highlight the potential to better align model-generated decisions and human preferences by deliberately modulating uncertainty and reducing LLMs' confidence in morally complex scenarios.
Abstract:Satellite-based slum segmentation holds significant promise in generating global estimates of urban poverty. However, the morphological heterogeneity of informal settlements presents a major challenge, hindering the ability of models trained on specific regions to generalize effectively to unseen locations. To address this, we introduce a large-scale high-resolution dataset and propose GRAM (Generalized Region-Aware Mixture-of-Experts), a two-phase test-time adaptation framework that enables robust slum segmentation without requiring labeled data from target regions. We compile a million-scale satellite imagery dataset from 12 cities across four continents for source training. Using this dataset, the model employs a Mixture-of-Experts architecture to capture region-specific slum characteristics while learning universal features through a shared backbone. During adaptation, prediction consistency across experts filters out unreliable pseudo-labels, allowing the model to generalize effectively to previously unseen regions. GRAM outperforms state-of-the-art baselines in low-resource settings such as African cities, offering a scalable and label-efficient solution for global slum mapping and data-driven urban planning.
Abstract:Causal reasoning is fundamental for Large Language Models (LLMs) to understand genuine cause-and-effect relationships beyond pattern matching. Existing benchmarks suffer from critical limitations such as reliance on synthetic data and narrow domain coverage. We introduce a novel benchmark constructed from casually identified relationships extracted from top-tier economics and finance journals, drawing on rigorous methodologies including instrumental variables, difference-in-differences, and regression discontinuity designs. Our benchmark comprises 40,379 evaluation items covering five task types across domains such as health, environment, technology, law, and culture. Experimental results on eight state-of-the-art LLMs reveal substantial limitations, with the best model achieving only 57.6\% accuracy. Moreover, model scale does not consistently translate to superior performance, and even advanced reasoning models struggle with fundamental causal relationship identification. These findings underscore a critical gap between current LLM capabilities and demands of reliable causal reasoning in high-stakes applications.
Abstract:Large language models trained on web-scale data can memorize private or sensitive knowledge, raising significant privacy risks. Although some unlearning methods mitigate these risks, they remain vulnerable to "relearning" during subsequent training, allowing a substantial portion of forgotten knowledge to resurface. In this paper, we show that widely used unlearning methods cause shallow alignment: instead of faithfully erasing target knowledge, they generate spurious unlearning neurons that amplify negative influence to hide it. To overcome this limitation, we introduce Ssiuu, a new class of unlearning methods that employs attribution-guided regularization to prevent spurious negative influence and faithfully remove target knowledge. Experimental results confirm that our method reliably erases target knowledge and outperforms strong baselines across two practical retraining scenarios: (1) adversarial injection of private data, and (2) benign attack using an instruction-following benchmark. Our findings highlight the necessity of robust and faithful unlearning methods for safe deployment of language models.
Abstract:The reversal curse -- a language model's (LM) inability to infer an unseen fact ``B is A'' from a learned fact ``A is B'' -- is widely considered a fundamental limitation. We show that this is not an inherent failure but an artifact of how models encode knowledge. By training LMs from scratch on a synthetic dataset of relational knowledge graphs, we demonstrate that bilinear relational structure emerges in their hidden representations. This structure substantially alleviates the reversal curse, enabling LMs to infer unseen reverse facts. Crucially, we also find that this bilinear structure plays a key role in consistent model editing. When a fact is updated in a LM with this structure, the edit correctly propagates to its reverse and other logically dependent facts. In contrast, models lacking this representation not only suffer from the reversal curse but also fail to generalize edits, further introducing logical inconsistencies. Our results establish that training on a relational knowledge dataset induces the emergence of bilinear internal representations, which in turn enable LMs to behave in a logically consistent manner after editing. This implies that the success of model editing depends critically not just on editing algorithms but on the underlying representational geometry of the knowledge being modified.
Abstract:Socio-economic indicators like regional GDP, population, and education levels, are crucial to shaping policy decisions and fostering sustainable development. This research introduces GeoReg a regression model that integrates diverse data sources, including satellite imagery and web-based geospatial information, to estimate these indicators even for data-scarce regions such as developing countries. Our approach leverages the prior knowledge of large language model (LLM) to address the scarcity of labeled data, with the LLM functioning as a data engineer by extracting informative features to enable effective estimation in few-shot settings. Specifically, our model obtains contextual relationships between data features and the target indicator, categorizing their correlations as positive, negative, mixed, or irrelevant. These features are then fed into the linear estimator with tailored weight constraints for each category. To capture nonlinear patterns, the model also identifies meaningful feature interactions and integrates them, along with nonlinear transformations. Experiments across three countries at different stages of development demonstrate that our model outperforms baselines in estimating socio-economic indicators, even for low-income countries with limited data availability.
Abstract:Deploying large language models (LLMs) with agency in real-world applications raises critical questions about how these models will behave. In particular, how will their decisions align with humans when faced with moral dilemmas? This study examines the alignment between LLM-driven decisions and human judgment in various contexts of the moral machine experiment, including personas reflecting different sociodemographics. We find that the moral decisions of LLMs vary substantially by persona, showing greater shifts in moral decisions for critical tasks than humans. Our data also indicate an interesting partisan sorting phenomenon, where political persona predominates the direction and degree of LLM decisions. We discuss the ethical implications and risks associated with deploying these models in applications that involve moral decisions.
Abstract:Recent advancements in machine learning (ML) are transforming the field of structural biology. For example, AlphaFold, a groundbreaking neural network for protein structure prediction, has been widely adopted by researchers. The availability of easy-to-use interfaces and interpretable outcomes from the neural network architecture, such as the confidence scores used to color the predicted structures, have made AlphaFold accessible even to non-ML experts. In this paper, we present various methods for representing protein 3D structures from low- to high-resolution, and show how interpretable ML methods can support tasks such as predicting protein structures, protein function, and protein-protein interactions. This survey also emphasizes the significance of interpreting and visualizing ML-based inference for structure-based protein representations that enhance interpretability and knowledge discovery. Developing such interpretable approaches promises to further accelerate fields including drug development and protein design.