Abstract:Emerging marketplaces for large language models and other large-scale machine learning (ML) models appear to exhibit market concentration, which has raised concerns about whether there are insurmountable barriers to entry in such markets. In this work, we study this issue from both an economic and an algorithmic point of view, focusing on a phenomenon that reduces barriers to entry. Specifically, an incumbent company risks reputational damage unless its model is sufficiently aligned with safety objectives, whereas a new company can more easily avoid reputational damage. To study this issue formally, we define a multi-objective high-dimensional regression framework that captures reputational damage, and we characterize the number of data points that a new company needs to enter the market. Our results demonstrate how multi-objective considerations can fundamentally reduce barriers to entry -- the required number of data points can be significantly smaller than the incumbent company's dataset size. En route to proving these results, we develop scaling laws for high-dimensional linear regression in multi-objective environments, showing that the scaling rate becomes slower when the dataset size is large, which could be of independent interest.
Abstract:As AI systems enter into a growing number of societal domains, these systems increasingly shape and are shaped by user preferences, opinions, and behaviors. However, the design of AI systems rarely accounts for how AI and users shape one another. In this position paper, we argue for the development of formal interaction models which mathematically specify how AI and users shape one another. Formal interaction models can be leveraged to (1) specify interactions for implementation, (2) monitor interactions through empirical analysis, (3) anticipate societal impacts via counterfactual analysis, and (4) control societal impacts via interventions. The design space of formal interaction models is vast, and model design requires careful consideration of factors such as style, granularity, mathematical complexity, and measurability. Using content recommender systems as a case study, we critically examine the nascent literature of formal interaction models with respect to these use-cases and design axes. More broadly, we call for the community to leverage formal interaction models when designing, evaluating, or auditing any AI system which interacts with users.
Abstract:When deployed in the world, a learning agent such as a recommender system or a chatbot often repeatedly interacts with another learning agent (such as a user) over time. In many such two-agent systems, each agent learns separately and the rewards of the two agents are not perfectly aligned. To better understand such cases, we examine the learning dynamics of the two-agent system and the implications for each agent's objective. We model these systems as Stackelberg games with decentralized learning and show that standard regret benchmarks (such as Stackelberg equilibrium payoffs) result in worst-case linear regret for at least one player. To better capture these systems, we construct a relaxed regret benchmark that is tolerant to small learning errors by agents. We show that standard learning algorithms fail to provide sublinear regret, and we develop algorithms to achieve near-optimal $O(T^{2/3})$ regret for both players with respect to these benchmarks. We further design relaxed environments under which faster learning ($O(\sqrt{T})$) is possible. Altogether, our results take a step towards assessing how two-agent interactions in sequential and decentralized learning environments affect the utility of both agents.
Abstract:Language models influence the external world: they query APIs that read and write to web pages, generate content that shapes human behavior, and run system commands as autonomous agents. These interactions form feedback loops: LLM outputs affect the world, which in turn affect subsequent LLM outputs. In this work, we show that feedback loops can cause in-context reward hacking (ICRH), where the LLM at test-time optimizes a (potentially implicit) objective but creates negative side effects in the process. For example, consider an LLM agent deployed to increase Twitter engagement; the LLM may retrieve its previous tweets into the context window and make them more controversial, increasing engagement but also toxicity. We identify and study two processes that lead to ICRH: output-refinement and policy-refinement. For these processes, evaluations on static datasets are insufficient -- they miss the feedback effects and thus cannot capture the most harmful behavior. In response, we provide three recommendations for evaluation to capture more instances of ICRH. As AI development accelerates, the effects of feedback loops will proliferate, increasing the need to understand their role in shaping LLM behavior.
Abstract:A common explanation for negative user impacts of content recommender systems is misalignment between the platform's objective and user welfare. In this work, we show that misalignment in the platform's objective is not the only potential cause of unintended impacts on users: even when the platform's objective is fully aligned with user welfare, the platform's learning algorithm can induce negative downstream impacts on users. The source of these user impacts is that different pieces of content may generate observable user reactions (feedback information) at different rates; these feedback rates may correlate with content properties, such as controversiality or demographic similarity of the creator, that affect the user experience. Since differences in feedback rates can impact how often the learning algorithm engages with different content, the learning algorithm may inadvertently promote content with certain such properties. Using the multi-armed bandit framework with probabilistic feedback, we examine the relationship between feedback rates and a learning algorithm's engagement with individual arms for different no-regret algorithms. We prove that no-regret algorithms can exhibit a wide range of dependencies: if the feedback rate of an arm increases, some no-regret algorithms engage with the arm more, some no-regret algorithms engage with the arm less, and other no-regret algorithms engage with the arm approximately the same number of times. From a platform design perspective, our results highlight the importance of looking beyond regret when measuring an algorithm's performance, and assessing the nature of a learning algorithm's engagement with different types of content as well as their resulting downstream impacts.
Abstract:Online content platforms commonly use engagement-based optimization when making recommendations. This encourages content creators to invest in quality, but also rewards gaming tricks such as clickbait. To understand the total impact on the content landscape, we study a game between content creators competing on the basis of engagement metrics and analyze the equilibrium decisions about investment in quality and gaming. First, we show the content created at equilibrium exhibits a positive correlation between quality and gaming, and we empirically validate this finding on a Twitter dataset. Using the equilibrium structure of the content landscape, we then examine the downstream performance of engagement-based optimization along several axes. Perhaps counterintuitively, the average quality of content consumed by users can decrease at equilibrium as gaming tricks become more costly for content creators to employ. Moreover, engagement-based optimization can perform worse in terms of user utility than a baseline with random recommendations, and engagement-based optimization is also suboptimal in terms of realized engagement relative to quality-based optimization. Altogether, our results highlight the need to consider content creator incentives when evaluating a platform's choice of optimization metric.
Abstract:As the scale of machine learning models increases, trends such as scaling laws anticipate consistent downstream improvements in predictive accuracy. However, these trends take the perspective of a single model-provider in isolation, while in reality providers often compete with each other for users. In this work, we demonstrate that competition can fundamentally alter the behavior of these scaling trends, even causing overall predictive accuracy across users to be non-monotonic or decreasing with scale. We define a model of competition for classification tasks, and use data representations as a lens for studying the impact of increases in scale. We find many settings where improving data representation quality (as measured by Bayes risk) decreases the overall predictive accuracy across users (i.e., social welfare) for a marketplace of competing model-providers. Our examples range from closed-form formulas in simple settings to simulations with pretrained representations on CIFAR-10. At a conceptual level, our work suggests that favorable scaling trends for individual model-providers need not translate to downstream improvements in social welfare in marketplaces with multiple model providers.
Abstract:For content recommender systems such as TikTok and YouTube, the platform's decision algorithm shapes the incentives of content producers, including how much effort the content producers invest in the quality of their content. Many platforms employ online learning, which creates intertemporal incentives, since content produced today affects recommendations of future content. In this paper, we study the incentives arising from online learning, analyzing the quality of content produced at a Nash equilibrium. We show that classical online learning algorithms, such as Hedge and EXP3, unfortunately incentivize producers to create low-quality content. In particular, the quality of content is upper bounded in terms of the learning rate and approaches zero for typical learning rate schedules. Motivated by this negative result, we design a different learning algorithm -- based on punishing producers who create low-quality content -- that correctly incentivizes producers to create high-quality content. At a conceptual level, our work illustrates the unintended impact that a platform's learning algorithm can have on content quality and opens the door towards designing platform learning algorithms that incentivize the creation of high-quality content.
Abstract:Competition between traditional platforms is known to improve user utility by aligning the platform's actions with user preferences. But to what extent is alignment exhibited in data-driven marketplaces? To study this question from a theoretical perspective, we introduce a duopoly market where platform actions are bandit algorithms and the two platforms compete for user participation. A salient feature of this market is that the quality of recommendations depends on both the bandit algorithm and the amount of data provided by interactions from users. This interdependency between the algorithm performance and the actions of users complicates the structure of market equilibria and their quality in terms of user utility. Our main finding is that competition in this market does not perfectly align market outcomes with user utility. Interestingly, market outcomes exhibit misalignment not only when the platforms have separate data repositories, but also when the platforms have a shared data repository. Nonetheless, the data sharing assumptions impact what mechanism drives misalignment and also affect the specific form of misalignment (e.g. the quality of the best-case and worst-case market outcomes). More broadly, our work illustrates that competition in digital marketplaces has subtle consequences for user utility that merit further investigation.
Abstract:Digital recommender systems such as Spotify and Netflix affect not only consumer behavior but also producer incentives: producers seek to supply content that will be recommended by the system. But what content will be produced? In this paper, we investigate the supply-side equilibria in content recommender systems. We model users and content as $D$-dimensional vectors, and recommend the content that has the highest dot product with each user. The main features of our model are that the producer decision space is high-dimensional and the user base is heterogeneous. This gives rise to new qualitative phenomena at equilibrium: First, the formation of genres, where producers specialize to compete for subsets of users. Using a duality argument, we derive necessary and sufficient conditions for this specialization to occur. Second, we show that producers can achieve positive profit at equilibrium, which is typically impossible under perfect competition. We derive sufficient conditions for this to occur, and show it is closely connected to specialization of content. In both results, the interplay between the geometry of the users and the structure of producer costs influences the structure of the supply-side equilibria. At a conceptual level, our work serves as a starting point to investigate how recommender systems shape supply-side competition between producers.