Abstract:Explainable information retrieval is an emerging research area aiming to make transparent and trustworthy information retrieval systems. Given the increasing use of complex machine learning models in search systems, explainability is essential in building and auditing responsible information retrieval models. This survey fills a vital gap in the otherwise topically diverse literature of explainable information retrieval. It categorizes and discusses recent explainability methods developed for different application domains in information retrieval, providing a common framework and unifying perspectives. In addition, it reflects on the common concern of evaluating explanations and highlights open challenges and opportunities.
Abstract:Post-hoc explanation methods are an important class of approaches that help understand the rationale underlying a trained model's decision. But how useful are they for an end-user towards accomplishing a given task? In this vision paper, we argue the need for a benchmark to facilitate evaluations of the utility of post-hoc explanation methods. As a first step to this end, we enumerate desirable properties that such a benchmark should possess for the task of debugging text classifiers. Additionally, we highlight that such a benchmark facilitates not only assessing the effectiveness of explanations but also their efficiency.
Abstract:The World Wide Web has become a popular source for gathering information and news. Multimodal information, e.g., enriching text with photos, is typically used to convey the news more effectively or to attract attention. Photo content can range from decorative, depict additional important information, or can even contain misleading information. Therefore, automatic approaches to quantify cross-modal consistency of entity representation can support human assessors to evaluate the overall multimodal message, for instance, with regard to bias or sentiment. In some cases such measures could give hints to detect fake news, which is an increasingly important topic in today's society. In this paper, we introduce a novel task of cross-modal consistency verification in real-world news and present a multimodal approach to quantify the entity coherence between image and text. Named entity linking is applied to extract persons, locations, and events from news texts. Several measures are suggested to calculate cross-modal similarity for these entities using state of the art approaches. In contrast to previous work, our system automatically gathers example data from the Web and is applicable to real-world news. Results on two novel datasets that cover different languages, topics, and domains demonstrate the feasibility of our approach. Datasets and code are publicly available to foster research towards this new direction.
Abstract:In this paper we propose and study the novel problem of explaining node embeddings by finding embedded human interpretable subspaces in already trained unsupervised node representation embeddings. We use an external knowledge base that is organized as a taxonomy of human-understandable concepts over entities as a guide to identify subspaces in node embeddings learned from an entity graph derived from Wikipedia. We propose a method that given a concept finds a linear transformation to a subspace where the structure of the concept is retained. Our initial experiments show that we obtain low error in finding fine-grained concepts.