University of Tübingen
Abstract:Dense prediction tasks such as object detection and segmentation require high-quality labels at pixel level, which are costly to obtain. Recent advances in foundation models have enabled the generation of autolabels, which we find to be competitive but not yet sufficient to fully replace human annotations, especially for more complex datasets. Thus, we consider the challenge of selecting a representative subset of images for labeling from a large pool of unlabeled images under a constrained annotation budget. This task is further complicated by imbalanced class distributions, as rare classes are often underrepresented in selected subsets. We propose object-focused data selection (OFDS) which leverages object-level representations to ensure that the selected image subsets semantically cover the target classes, including rare ones. We validate OFDS on PASCAL VOC and Cityscapes for object detection and semantic segmentation tasks. Our experiments demonstrate that prior methods which employ image-level representations fail to consistently outperform random selection. In contrast, OFDS consistently achieves state-of-the-art performance with substantial improvements over all baselines in scenarios with imbalanced class distributions. Moreover, we demonstrate that pre-training with autolabels on the full datasets before fine-tuning on human-labeled subsets selected by OFDS further enhances the final performance.
Abstract:Vision-Language models like CLIP have been shown to be highly effective at linking visual perception and natural language understanding, enabling sophisticated image-text capabilities, including strong retrieval and zero-shot classification performance. Their widespread use, as well as the fact that CLIP models are trained on image-text pairs from the web, make them both a worthwhile and relatively easy target for backdoor attacks. As training foundational models, such as CLIP, from scratch is very expensive, this paper focuses on cleaning potentially poisoned models via fine-tuning. We first show that existing cleaning techniques are not effective against simple structured triggers used in Blended or BadNet backdoor attacks, exposing a critical vulnerability for potential real-world deployment of these models. Then, we introduce PAR, Perturb and Recover, a surprisingly simple yet effective mechanism to remove backdoors from CLIP models. Through extensive experiments across different encoders and types of backdoor attacks, we show that PAR achieves high backdoor removal rate while preserving good standard performance. Finally, we illustrate that our approach is effective even only with synthetic text-image pairs, i.e. without access to real training data. The code and models are available at \href{https://github.com/nmndeep/PerturbAndRecover}{https://github.com/nmndeep/PerturbAndRecover}.
Abstract:A plethora of jailbreaking attacks have been proposed to obtain harmful responses from safety-tuned LLMs. In their original settings, these methods all largely succeed in coercing the target output, but their attacks vary substantially in fluency and computational effort. In this work, we propose a unified threat model for the principled comparison of these methods. Our threat model combines constraints in perplexity, measuring how far a jailbreak deviates from natural text, and computational budget, in total FLOPs. For the former, we build an N-gram model on 1T tokens, which, in contrast to model-based perplexity, allows for an LLM-agnostic and inherently interpretable evaluation. We adapt popular attacks to this new, realistic threat model, with which we, for the first time, benchmark these attacks on equal footing. After a rigorous comparison, we not only find attack success rates against safety-tuned modern models to be lower than previously presented but also find that attacks based on discrete optimization significantly outperform recent LLM-based attacks. Being inherently interpretable, our threat model allows for a comprehensive analysis and comparison of jailbreak attacks. We find that effective attacks exploit and abuse infrequent N-grams, either selecting N-grams absent from real-world text or rare ones, e.g. specific to code datasets.
Abstract:In realistic medical settings, the data are often inherently long-tailed, with most samples concentrated in a few classes and a long tail of rare classes, usually containing just a few samples. This distribution presents a significant challenge because rare conditions are critical to detect and difficult to classify due to limited data. In this paper, rather than attempting to classify rare classes, we aim to detect these as out-of-distribution data reliably. We leverage low-rank adaption (LoRA) and diffusion guidance to generate targeted synthetic data for the detection problem. We significantly improve the OOD detection performance on a challenging histopathological task with only ten samples per tail class without losing classification accuracy on the head classes.
Abstract:Inverse problems, such as accelerated MRI reconstruction, are ill-posed and an infinite amount of possible and plausible solutions exist. This may not only lead to uncertainty in the reconstructed image but also in downstream tasks such as semantic segmentation. This uncertainty, however, is mostly not analyzed in the literature, even though probabilistic reconstruction models are commonly used. These models can be prone to ignore plausible but unlikely solutions like rare pathologies. Building on MRI reconstruction approaches based on diffusion models, we add guidance to the diffusion process during inference, generating two meaningfully diverse reconstructions corresponding to an upper and lower bound segmentation. The reconstruction uncertainty can then be quantified by the difference between these bounds, which we coin the 'uncertainty boundary'. We analyzed the behavior of the upper and lower bound segmentations for a wide range of acceleration factors and found the uncertainty boundary to be both more reliable and more accurate compared to repeated sampling. Code is available at https://github.com/NikolasMorshuis/SGR
Abstract:Neural networks typically generalize well when fitting the data perfectly, even though they are heavily overparameterized. Many factors have been pointed out as the reason for this phenomenon, including an implicit bias of stochastic gradient descent (SGD) and a possible simplicity bias arising from the neural network architecture. The goal of this paper is to disentangle the factors that influence generalization stemming from optimization and architectural choices by studying random and SGD-optimized networks that achieve zero training error. We experimentally show, in the low sample regime, that overparameterization in terms of increasing width is beneficial for generalization, and this benefit is due to the bias of SGD and not due to an architectural bias. In contrast, for increasing depth, overparameterization is detrimental for generalization, but random and SGD-optimized networks behave similarly, so this can be attributed to an architectural bias. For more information, see https://bias-sgd-or-architecture.github.io .
Abstract:Multi-modal foundation models such as CLIP have showcased impressive zero-shot capabilities. However, their applicability in resource-constrained environments is limited due to their large number of parameters and high inference time. While existing approaches have scaled down the entire CLIP architecture, we focus on training smaller variants of the image encoder, which suffices for efficient zero-shot classification. The use of synthetic data has shown promise in distilling representations from larger teachers, resulting in strong few-shot and linear probe performance. However, we find that this approach surprisingly fails in true zero-shot settings when using contrastive losses. We identify the exploitation of spurious features as being responsible for poor generalization between synthetic and real data. However, by using the image feature-based L2 distillation loss, we mitigate these problems and train students that achieve zero-shot performance which on four domain-specific datasets is on-par with a ViT-B/32 teacher model trained on DataCompXL, while featuring up to 92% fewer parameters.
Abstract:Many safety-critical applications, especially in autonomous driving, require reliable object detectors. They can be very effectively assisted by a method to search for and identify potential failures and systematic errors before these detectors are deployed. Systematic errors are characterized by combinations of attributes such as object location, scale, orientation, and color, as well as the composition of their respective backgrounds. To identify them, one must rely on something other than real images from a test set because they do not account for very rare but possible combinations of attributes. To overcome this limitation, we propose a pipeline for generating realistic synthetic scenes with fine-grained control, allowing the creation of complex scenes with multiple objects. Our approach, BEV2EGO, allows for a realistic generation of the complete scene with road-contingent control that maps 2D bird's-eye view (BEV) scene configurations to a first-person view (EGO). In addition, we propose a benchmark for controlled scene generation to select the most appropriate generative outpainting model for BEV2EGO. We further use it to perform a systematic analysis of multiple state-of-the-art object detection models and discover differences between them.
Abstract:Multi-modal foundation models like OpenFlamingo, LLaVA, and GPT-4 are increasingly used for various real-world tasks. Prior work has shown that these models are highly vulnerable to adversarial attacks on the vision modality. These attacks can be leveraged to spread fake information or defraud users, and thus pose a significant risk, which makes the robustness of large multi-modal foundation models a pressing problem. The CLIP model, or one of its variants, is used as a frozen vision encoder in many vision-language models (VLMs), e.g. LLaVA and OpenFlamingo. We propose an unsupervised adversarial fine-tuning scheme to obtain a robust CLIP vision encoder, which yields robustness on all vision down-stream tasks (VLMs, zero-shot classification) that rely on CLIP. In particular, we show that stealth-attacks on users of VLMs by a malicious third party providing manipulated images are no longer possible once one replaces the original CLIP model with our robust one. No retraining or fine-tuning of the VLM is required. The code and robust models are available at https://github.com/chs20/RobustVLM
Abstract:Counterfactual reasoning is often used in clinical settings to explain decisions or weigh alternatives. Therefore, for imaging based specialties such as ophthalmology, it would be beneficial to be able to create counterfactual images, illustrating answers to questions like "If the subject had had diabetic retinopathy, how would the fundus image have looked?". Here, we demonstrate that using a diffusion model in combination with an adversarially robust classifier trained on retinal disease classification tasks enables the generation of highly realistic counterfactuals of retinal fundus images and optical coherence tomography (OCT) B-scans. The key to the realism of counterfactuals is that these classifiers encode salient features indicative for each disease class and can steer the diffusion model to depict disease signs or remove disease-related lesions in a realistic way. In a user study, domain experts also found the counterfactuals generated using our method significantly more realistic than counterfactuals generated from a previous method, and even indistinguishable from real images.